• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, February 27, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Rules of resistance against transgene silencing

Bioengineer by Bioengineer
January 28, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2021 KAUST; Monika Priyadarshini.

Clear rules for engineering transgenes that can be inserted and propagated over multiple generations of nematodes include ways to protect inserted genes from the organism’s natural defenses against foreign DNA. Developed by KAUST researchers, the rules have implications for many research fields, including gene therapy development.

Scientists often study biological processes, such as normal and mutant gene functions, in the worm Caenorhabditis elegans because it has many genes and molecular pathways in common with humans. Specific gene functions can be investigated by injecting DNA into the worm’s reproductive organs, where it links into what is known as an extra-chromosomal array. This array is eventually incorporated into the nucleus, where it is duplicated and segregated into daughter cells. The injected genetic material is then potentially inherited across generations, which last only two days in C. elegans, allowing researchers to study gene functions over multiple generations in a short time period.

But C. elegans, like other multi-cellular organisms, has silencing mechanisms for recognizing and shutting down foreign DNA, which can hinder research efforts.

Scientists recently discovered that a class of noncoding DNA, called periodic A/T clusters (PATCs), can watermark their own genetic sequences to protect them from the natural silencing mechanisms of cells.

Bioengineer Christian Frøkjær-Jensen conducted investigations with students and researchers in his lab to develop rules for using PATCs, some gene regulators and reagents for persistent expression of transgenes in the C. elegans germline from simple extra-chromosomal arrays.

The protocol helps optimize transgenes and describes where PATCs should be inserted and the temperatures most suitable for propagating transgene strains, among other rules.

“Think of electrical circuits,” says Frøkjær-Jensen. “Any electrical engineer can buy resistors and capacitors and be certain that these parts will behave in predictable ways when put together into a circuit. Our work aims to develop similar standards for genetic engineering in multicellular organisms. We also aim to freely distribute the necessary reagents for this process to the rest of the academic scientific community; we hope this will put KAUST on the map for biological engineering and synthetic biology.”

Their investigations also led to the development of a web-based application for researchers to analyze their own DNA sequences for PATC watermarks. “PATCs can span large distances and rely on patterns that are not easily identifiable,” explains Frøkjær-Jensen. “Previously, researchers needed to install specialized software to do this. Now, scientists can simply copy-paste their sequence files into our application to get an immediate analysis and graphical output.” This will help scientists more easily use PATCs in their research and study their roles.

###

KAUST’s web application for computing PATC scores in DNA sequences can be found at http://www.wormbuilder.org/PATC.

Media Contact
Michael Cusack
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/1087/rules-of-resistance-against-transgene-silencing

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-19898-0

Tags: BioinformaticsBiologyCell BiologyGeneticsMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI

February 27, 2021
IMAGE

Cerium sidelines silver to make drug precursor

February 26, 2021

Agents of food-borne zoonoses confirmed to parasitise newly-recorded in Thailand snails

February 26, 2021

Dinosaur species: ‘Everyone’s unique’

February 26, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceMedicine/HealthcancerInfectious/Emerging DiseasesEcology/EnvironmentMaterialsCell BiologyClimate ChangeBiologyGeneticsPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Picture books can boost physical activity for youth with autism
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In