• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, May 19, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Rudolph’s antlers inspire next generation of unbreakable materials

Bioengineer by Bioengineer
December 19, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit:

Scientists from Queen Mary University of London (QMUL) have discovered the secret behind the toughness of deer antlers and how they can resist breaking during fights.

The team looked at the antler structure at the 'nano-level', which is incredibly small, almost one thousandth of the thickness of a hair strand, and were able to identify the mechanisms at work, using state-of-the-art computer modelling and x-ray techniques.

First author Paolino De Falco from QMUL's School of Engineering and Materials Science said: "The fibrils that make up the antler are staggered rather than in line with each other. This allows them to absorb the energy from the impact of a clash during a fight."

The research, published today in the journal ACS Biomaterials Science & Engineering, provides new insights and fills a previous gap in the area of structural modelling of bone. It also opens up possibilities for the creation of a new generation of materials that can resist damage.

Co-author Dr Ettore Barbieri, also from QMUL's School of Engineering and Materials Science, said: "Our next step is to create a 3D printed model with fibres arranged in staggered configuration and linked by an elastic interface.

The aim is to prove that additive manufacturing – where a prototype can be created a layer at a time – can be used to create damage resistant composite material."

###

Media Contact

Mark Byrne
[email protected]
44-781-590-2560
@QMUL

http://www.qmul.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

A revolution in recycling

Recycling more precious metals from nuclear and electronic waste using the Picasso pigment, Prussian blue

May 19, 2022
Tom70-based transcriptional regulation of mitochondrial biogenesis and aging

Buck Scientist uncovers clues to aging in mitochondria

May 18, 2022

Scripps Research awarded $67 million by NIH to lead new Pandemic Preparedness Center

May 18, 2022

NIAID announces antiviral drug development awards

May 18, 2022
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVirologyVehiclesZoology/Veterinary ScienceVaccinesUrogenital SystemUrbanizationWeaponryVirusVaccineViolence/CriminalsWeather/Storms

Recent Posts

  • Recycling more precious metals from nuclear and electronic waste using the Picasso pigment, Prussian blue
  • Buck Scientist uncovers clues to aging in mitochondria
  • Scripps Research awarded $67 million by NIH to lead new Pandemic Preparedness Center
  • NIAID announces antiviral drug development awards
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....