• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 26, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Rotting away: Getting at the evolutionary roots of wood decay

Bioengineer by Bioengineer
November 10, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Professor Laszlo Nagy, Synthetic and Systems Biology Unit, Institute of Biochemistry, BRC-HAS, Szeged 6726, Hungary

Decay is a complex process in which organisms use a repertoire of enzymes to slowly exploit and ultimately digest their hosts. Fungi are master decayers of dead plant matter, including wood. So-called white rot fungi have the special ability to decompose the tough, recalcitrant plant polymer lignin, using enzymes that turn solid wood into a stringy, bleached pulp.

Now professor Laszlo Nagy et al., in a new publication featured in the advanced access online version of the journal Molecular Biology and Evolution, have created a bioinformatics tool, called COMPARE, a novel method of phylogenetic profiling to correlate the evolution of a given phenotypic trait with the pattern of gene family gain, loss and duplication in a set of genomes.

Next, they applied the strategy to the specific question of the evolution of wood decay strategies across fungi to profile each of the fungal species's genomic innovations with a focus on identifying the gene families that enable white rot fungi to decompose wood. White rot fungi can completely break down both the carbohydrates and lignin that make up the wood and bark, making them especially potent recyclers of organic material.

The research team, using data from 62 fungal genomes, not only correctly identified the expansion of peroxidases necessary for lignin degradation in white rot fungi, but also detected a large suite of genes (409 in total) that show statistically significant changes in copy number (duplication/loss events) associated with the gains and losses of white rot wood decay.

"When people think about white rot, they tend to focus on lignin, but these results show that evolution of white rot involved expansions in diverse enzymes, not just those that attack lignin," said corresponding author Laszlo Nagy.

The results have shed light on the complexity of white rot and suggest that its evolution has involved a general elaboration of the decay apparatus, including numerous enzymes with as-yet unknown functions to further explore. These enzymes and the pathways proposed to be involved in wood-decay could lead to improved technologies for biofuel production – an industry that relies on the very same enzymes as fungi use for breaking down plant cell walls. In addition, their COMPARE bioinformatics tool is versatile enough to apply to other studies looking to uncover gene pathways associated with various traits.

###

Media Contact

Joseph Caspermeyer
[email protected]
480-258-8972
@OfficialSMBE

http://mbe.oxfordjournals.org/

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Impact of patient-reported symptom information on lumbar spine MRI Interpretation

January 25, 2021
IMAGE

Governments need to set clear rules for vaccinating health care workers against COVID-19

January 25, 2021

In ED patients with chest and abdominal pain, care delivered by physicians and APPs is similar

January 25, 2021

New book on Influenza: The Cutting Edge from CSHLPress

January 25, 2021
Next Post
blank

Electricity giants extend their might to financial institutions on advanced tech path to Paris goals

Nature already dramatically impacted by climate change, study reveals

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    68 shares
    Share 27 Tweet 17
  • New drug form may help treat osteoporosis, calcium-related disorders

    41 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Medicine/HealthInfectious/Emerging DiseasesBiologycancerCell BiologyMaterialsGeneticsClimate ChangeTechnology/Engineering/Computer ScienceEcology/EnvironmentPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Impact of patient-reported symptom information on lumbar spine MRI Interpretation
  • Governments need to set clear rules for vaccinating health care workers against COVID-19
  • In ED patients with chest and abdominal pain, care delivered by physicians and APPs is similar
  • New book on Influenza: The Cutting Edge from CSHLPress
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In