• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Role of cooperativity in hydrophobic interactions revealed in real-time monitoring

Bioengineer by Bioengineer
July 6, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Department of Chemistry, HKUST

Hydrophobic interactions is one major type of intermolecular force that plays a vital role in many life processes in Chemistry and Physics. In biological systems, hydrophobic interactions can stabilize the internal cores of proteins and form lipid vesicles that store nutrients in our cells.In proteins, hydrophobic interactions can stabilize the internal cores and form lipid vesicles that store nutrients in our cells. What is so intriguing about hydrophobic interaction is that it exhibits a cooperative property called cooperativity, which does not exist in other fundamental intermolecular forces, such as dipole-dipole interactions and Van der Waals forces. Cooperativity means that in the presence of multiple molecules (at least more than two), the overall strength of the interaction between the molecules is much greater than that when there are only two molecules acting in pairs.

A major gap in the textbook knowledge of hydrophobic interaction and its cooperativity that have profound implications in many fundamental processes in nature is: to what extent cooperativity contributes to hydrophobic interactions that stabilize the assembly of macromolecules? One gigantic roadblock to solving this long-standing puzzle is the extreme difficulty to quantify cooperativity by experiments, as cooperativity is originated from the collective motions of water hydrogen bond networks surrounding hydrophobic solutes.

In a breakthrough, scientists from The Hong Kong University of Science and Technology overcame these challenges by designing an innovative microfluidic mixer that monitors the fluorescence induced by hydrophobic aggregation. This scientific advance not only allows the quantification of molecular hydrophobic interaction and its cooperativity in bulk solution, but also provides a clear and quantitative evidence for the critical role of cooperativity in hydrophobic aggregation that is being consolidated by their kinetic nucleation-growth theory.

Their findings were published in the journal Nature Communications on May 31, 2017 (doi: 10.1038/ncomms15639).

"To quantify hydrophobic interactions, we real-time monitored hydrophobic aggregation in bulk solution at microsecond time scale," said Prof. Xuhui Huang, corresponding author of the manuscript. "To achieve this, we probed fluorescence induced by aggregation upon rapid mixing of water and hydrophobic solute using the microfluidic device. We then fitted the measured fluorescence to the kinetics nucleation-growth theory".

"The state-of-the-art microfluidic device allows us to track the aggregation of the solute molecule at very short, microsecond timescales due to the fine dimensions of the solute jet (at submicron in diameter) focused by microfluidic flow. Our results demonstrated that the attachment of a hydrophobic monomer to its aggregate in water occurs at sub-microsecond." Prof. Shuhuai Yao, the other corresponding author further elaborated.

###

Media Contact

Johnny Tam
[email protected]
852-235-88556

http://www.ust.hk

Related Journal Article

http://dx.doi.org/10.1038/ncomms15639

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

September 17, 2025
blank

Optimizing Selenium Intake to Improve Sperm Quality in Broilers

September 17, 2025

Sodium Selenite Boosts Fermentation in Alfalfa Silage

September 17, 2025

Disease Experts Collaborate with Florida Museum of Natural History to Develop West Nile Virus Forecast

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Patients in the World’s Poorest Countries Face Triple the Mortality Risk After Abdominal Trauma Surgery

Soap Shortage Identified as Top Obstacle to Effective Hand Hygiene in Shared Community Spaces

Recurring Cystitis Episodes Could Indicate Urogenital Cancers in Middle-Aged Adults

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.