• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 16, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Robotics

Robots with insect-like brains

Bioengineer by Bioengineer
February 4, 2014
in Robotics
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rsearchers of Freie Universität Berlin, of the Bernstein Fokus Neuronal Basis of Learning, and of the Bernstein Center Berlin and have developed a robot that perceives environmental stimuli and learns to react to them. The scientists used the relatively simple nervous system of the honeybee as a model for its working principles. To this end, they installed a camera on a small robotic vehicle and connected it to a computer. The computer program replicated in a simplified way the sensorimotor network of the insect brain. The input data came from the camera that-akin to an eye-received and projected visual information. The neural network, in turn, operated the motors of the robot wheels-and could thus control its motion direction.

Robots with Insect Brains

The outstanding feature of this artificial mini brain is its ability to learn by simple principles. “The network-controlled robot is able to link certain external stimuli with behavioral rules,” says Professor Martin Paul Nawrot, head of the research team and professor of neuroscience at Freie Universität Berlin. “Much like honeybees learn to associate certain flower colors with tasty nectar, the robot learns to approach certain colored objects and to avoid others.”

In the learning experiment, the scientists located the network-controlled robot in the center of a small arena. Red and blue objects were installed on the walls. Once the robot’s camera focused on an object with the desired color — red, for instance — , the scientists triggered a light flash. This signal activated a so-called reward sensor nerve cell in the artificial network. The simultaneous processing of red color and the reward now led to specific changes in those parts of the network, which exercised control over the robot wheels. As a consequence, when the robot “saw” another red object, it started to move toward it. Blue items, in contrast, made it move backwards. “Just within seconds, the robot accomplishes the task to find an object in the desired color and to approach it,” explains Nawrot. “Only a single learning trial is needed, similar to experimental observations in honeybees.”
The current study was carried out at Freie Universität Berlin within an interdisciplinary collaboration between the research groups “Neuroinformatics” (Institute of Biology) led by Professor Martin Paul Nawrot and “Artificial Intelligence” (Institute of Computer Science) led by Professor Raúl Rojas. The scientists are now planning to expand their neural network by supplementing more learning principles. Thus, the mini brain will become even more powerful-and the robot more autonomous.

The Bernstein Focus “Neuronal Basis of Learning” with its project “Insect inspired robots: towards an understanding of memory in decision making” and the Bernstein Center Berlin are part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research has supported the new discipline of Computational Neuroscience since 2004 with more than 170 million Euros.The network is named after the German physiologist Julius Bernstein (1835-1917).

Story Source:

The above story is based on materials provided by Freie Universitaet Berlin.

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Thumbs-up for mind-controlled robotic arm

December 17, 2014
blank

Rise of the compliant machines

March 9, 2014
Next Post
blank

Artificial Cell Turned Into Complex Biological Materials

blank

DARPA Publishes Huge Online Catalog of Open Source Code

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeChemistry/Physics/Materials SciencesBiologyInfectious/Emerging DiseasesTechnology/Engineering/Computer ScienceMedicine/HealthEcology/EnvironmentMaterialsGeneticscancerPublic HealthCell Biology

Recent Posts

  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Conductive nature in crystal structures revealed at magnification of 10 million times
  • Howard University professor to receive first Joseph A. Johnson Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In