• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Robotic gripping mechanism mimics how sea anemones catch prey

Bioengineer by Bioengineer
January 14, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The doughnut-shaped, plastic rubber device crimps its skin to latch onto anything from cloth to beakers filled with liquid.

IMAGE

Credit: Weifeng Yuan


WASHINGTON, January 14, 2020 — Most robotic gripping mechanisms to date have relied on humanlike fingers or appendages, which sometimes struggle to provide the fine touch, flexibility or cost-effectiveness needed in some circumstances to hold onto objects. Recent work looks to provide a path forward for gripping robots from an unlikely source — the doughnut-shaped sea anemone.

Researchers at the Southwest University of Science and Technology and Tsinghua University in China demonstrated a robotic gripping mechanism that mimics how a sea anemone catches its prey. The bionic torus captures and releases objects by crimping its skin. The grasper not only is relatively cheap and easy to produce but also can grab a variety of objects of different sizes, shapes, weights and materials. They discuss their work in this week’s Applied Physics Letters, from AIP Publishing.

“In industries, multi-fingered dexterous hands are widely used to perform grabbing tasks. However, these end-effectors consist of a large number of components, like joints and sensors, which are difficult to control,” said author Weifeng Yuan.

The thermoplastic rubber skin that lines the exterior of the liquid-filled ring rolls inward when the inner skin of the gripper experiences a pulling force, sucking in whatever target being grabbed.

Researchers can adjust various features of the torus, such as the rolling direction and length of the skin, to control whether items are engulfed, swallowed or released.

“We found that sea anemones can capture sea creatures with different shapes and sizes, so we decided to investigate the mechanism of the predation strategy, and we believed that the study would be helpful to the design of adaptive soft graspers,” Yuan said.

The group demonstrated the device by latching onto objects, ranging from a piece of cloth to a cellphone to a glass beaker filled with liquid.

Yuan said a flexible gripper has the potential to grasp fragile objects in narrow spaces or extreme, high-pressure environments, such as collecting samples of deep-sea organisms or conveying pipes. What’s more, the grasper can also be built on the nanoscale to manipulate individual cells. Yuan sees potential in developing surgical instruments.

“Our grasper can grasp a steel bar from a table one minute and an egg from a basket the next without resetting control parameters,” Yuan said.

The group hopes to continue fleshing out the potential for such a unique device, such as increasing the strength-to-weight ratio by using air instead of liquids.

###

The article, “Bionic torus as a self-adaptive soft grasper in robots,” is authored by Hongbin Zang, Bing Liao, Xin Lang, Zi-Long Zhao, Weifeng Yuan and Xi-Qiao Feng. The article appeared in Applied Physics Letters on Jan. 14, 2020 (DOI: 10.1063/1.5128474) and can be accessed at https://aip.scitation.org/doi/10.1063/1.5128474.

ABOUT THE JOURNAL

Applied Physics Letters features rapid reports on significant discoveries in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See https://aip.scitation.org/journal/apl.

Media Contact
Larry Frum
[email protected]
301-209-3090

Related Journal Article

http://dx.doi.org/10.1063/1.5128474

Tags: BiologyBiomechanics/BiophysicsChemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Pulp Mill Waste Transformed into Eco-Friendly Solution for Eliminating Toxic Dyes

September 27, 2025

Fluorogenic Probes Unveil Ferroptosis Onset, Progression

September 26, 2025

Cutting-Edge Adaptive Optics Boost Gravitational-Wave Discoveries

September 26, 2025

Jingyuan Xu of KIT Honored with “For Women in Science” Sponsorship Award

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    84 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

At-Home Monitoring Reduces Hospitalization Rates for Children with Asthma by 50%

Factors Behind Nurse Migration: Insights from Iranian Students

Engineering Macrophages for Precision Cancer Therapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.