• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

RNA modification discovery suggests new code for control of gene…

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

A new cellular signal discovered by a team of scientists at the University of Chicago with scientists from Tel Aviv University provides a promising new lever in the control of gene expression.

The study, published online Feb. 10 in the journal Nature, describes a small chemical modification that can significantly boost the conversion of genes to proteins. Together with other recent findings, the discovery enriches a critical new dimension to the "Central Dogma" of molecular biology: the epitranscriptome.

"This discovery further opens the window on a whole new world of biology for us to explore," said Chuan He, John T. Wilson Distinguished Service Professor in Chemistry, Investigator of the Howard Hughes Medical Institute at UChicago and senior author of the study. "These modifications have a major impact on almost every biological process."

The central dogma of molecular biology describes the cellular pathway where genetic information from DNA is copied into temporary RNA "transcripts," which provide the recipe for the production of proteins. Since the theory was first postulated by Francis Crick in 1956, scientists have discovered a multitude of modifications to DNA and proteins that regulate this process.

Only recently, however, have scientists focused on investigating dynamic modifications that specifically target the RNA step. In 2011, He's group discovered the first RNA demethylase that reverses the most prevalent mRNA methylation N6-methyladenosine (m6A), implying that the addition and removal of the methyl group could dramatically affect these messengers and impact the outcome of gene expression, as also seen for DNA and histones. Subsequently, scientists discovered that the dynamic and reversible methylation of m6A dramatically controlled the metabolism and function of most cellular messenger RNA (mRNA), and thus, the production of proteins.

In the new Nature study, researchers from UChicago and Tel Aviv University describe a second functional mRNA methylation, N1-methyladenosine (m1A). Like m6A, the small modification is evolutionarily conserved and common, present in humans, rodents, and yeast, the authors found. But its location and effect on gene expression reflect a new form of epitranscriptome control, and suggest an even larger cellular "control panel."

"The discovery of m1A is extremely important, not only because of its own potential in affecting biological processes, but also because it validates the hypothesis that there is not just one functional modification," He said. "There could be multiple modifications at different sites where each may carry a distinct message to control the fate and function of mRNA."

The researchers estimated that m1A was present on transcripts of more than one out of three expressed human genes. Methylated genes exhibited enhanced translation compared to unmethlyated genes, producing protein levels nearly twice as high in all cell types. This increase suggests that m1A, like m6A, may be a mechanism by which cells rapidly boost the expression of hundreds or thousands of specific genes, perhaps during important processes such as cell division, differentiation, or under stress.

"mRNA is the perfect place to regulate gene expression, because they can code information from transcription and directly impact translation; you can add a consensus sequence to a group of genes and use a modification of the sequence to readily control several hundred transcripts simultaneously," He said. "If you want to rapidly change the expression of several hundred or a thousand genes, this offers the best way."

However, despite their complementary effects, m1A and m6A exert their influence on mRNA through different pathways. While studies have found that m6A localizes predominantly to the tail of messenger RNA molecules, increasing their translation and turnover rate, m1A was found largely near the start codon of mRNA transcripts, where protein translation begins. The different mechanisms could allow for finer tuning of post-transcriptional gene expression, or the selective activation of particular genes in different physiological situations.

"This study represents a breakthrough discovery in the exciting, nascent field of the 'epitranscriptome,' which is how RNAs are regulated, akin to the genome and the epigenome," said Christopher Mason, associate professor at Weill Cornell Medicine, who was not affiliated with the study. "What is important about this work is that m6A was recently found to enrich at the ends of genes, and now we know that m1A is what is helping regulate the beginning of genes, and this opens up many questions about revealing the 'epitranscriptome code' just like the histone code or the genetic code. "

Future studies will examine the role of m1A methylation in human development, diseases such as diabetes and cancer, and its potential as a target for therapeutic uses.–Rob Mitchum

###

Citation; "The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA," Nature,Feb. 10, 2016, by Chuan He, Dan Dominissini, Sigrid Nachtergaele, Qing Dai, Dali Han, Wesley Clark, Guanqun Zheng, Tao Pan, and Louis Dore from the University of Chicago, and Sharon Moshitch-Moshkovitz, Eyal Peer, Nitkan Kol, Moshe Shay Ben-Haim, Ayelet Di Segni, Mali Salmon-Divon, Oz Solomon, Eran Eyal, Vera Hershkovitz, Ninette Amariglio, and Gideon Rechavi from Tel Aviv University. DOI: 10.1038/nature16998

Media Contact

Steve Koppes
[email protected]
773-702-8366
@UChicago

http://www-news.uchicago.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Studying Turkish Nurses: Harassment Scale Validation Insights

September 26, 2025

Robot-Assisted Bronchoscopy Enables Diagnosis of Smallest, Hard-to-Reach Lung Tumors

September 26, 2025

Rehabilitation Needs of Major Disorders: A Review

September 26, 2025

Ovarian Autophagy: Benefits, Risks, and Key Questions

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    77 shares
    Share 31 Tweet 19
  • Physicists Develop Visible Time Crystal for the First Time

    71 shares
    Share 28 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    54 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Studying Turkish Nurses: Harassment Scale Validation Insights

Robot-Assisted Bronchoscopy Enables Diagnosis of Smallest, Hard-to-Reach Lung Tumors

Rehabilitation Needs of Major Disorders: A Review

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.