• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Rice University scientists get fungi to spill their secrets

Bioengineer by Bioengineer
January 6, 2023
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HOUSTON – (Jan. 6, 2023) – As anyone who has ever attended a cocktail party can tell you, shedding inhibitions makes you more talkative and possibly more prone to divulging secrets. Fungi, it turns out, are no different from humans in this respect.

Researcher photo

Credit: Photo by Jeff Fitlow/Rice University

HOUSTON – (Jan. 6, 2023) – As anyone who has ever attended a cocktail party can tell you, shedding inhibitions makes you more talkative and possibly more prone to divulging secrets. Fungi, it turns out, are no different from humans in this respect.

Using an approach that simultaneously modifies multiple sites in fungal genomes, Rice University chemical and biomolecular engineer Xue Sherry Gao and collaborators coax fungi into revealing their best-kept secrets, ramping up the pace of new drug discovery.

It is the first time that the technique, multiplex base-editing (MBE), has been deployed as a tool for mining fungal genomes for medically useful compounds. Compared to single-gene editing, the MBE platform reduces the research timeline by over 80% in equivalent experimental settings, from an estimated three months to roughly two weeks.

Fungi and other organisms produce bioactive small molecules such as penicillin to protect themselves from disease agents. These bioactive natural products (NPs) can be used as drugs or as molecular blueprints for designing new drugs.

Using the MBE technology, the Gao lab at Rice’s Brown School of Engineering induced fungi to produce significantly more natural compounds, including some previously unknown to the scientific community.

The study is published in the Journal of the American Chemical Society.

Base-editing refers to the use of CRISPR-based tools in order to modify a rung in the spiral ladder of DNA known as a base pair. Previously, gene modifications using base-editing had to be carried out one at a time, making the research process more time-consuming. “We created a new machinery that enables base-editing to work on multiple genomic sites, hence the ‘multiplex,’” Gao said.

Gao and her team first tested the efficacy of their new base-editing platform by targeting genes encoding for pigment in a fungal strain known as Aspergillus nidulans. The effectiveness and precision of MBE-enabled genome edits was readily visible in the changed color displayed by A. nidulans colonies.

“To me, the fungal genome is a treasure,” Gao said, referring to the significant medical potential of fungi-derived compounds. “However, under most circumstances, fungi ‘keep to themselves’ in the laboratory and don’t produce the bioactive small molecules we are looking for. In other words, the majority of genes or biosynthetic gene clusters of interest to us are ‘cryptic,’ meaning they do not express their full biosynthetic potential.

“The genetic, epigenetic and environmental factors that instruct organisms to produce these medically useful compounds are extremely complicated in fungi,” Gao said. Enabled by the MBE platform, her team can easily delete several of the regulatory genes that restrict the production of bioactive small molecules. “We can observe the synergistic effects of eliminating those factors that make the biosynthetic machinery silent,” she said.

Disinhibited, the engineered fungal strains produce more bioactive molecules, each with their own distinct chemical profiles. Five of the 30 NPs generated in one assay were new, never-before-reported compounds.

“These compounds could be useful antibiotics or anticancer drugs,” Gao said. “We are in the process of figuring out what the biological functions of these compounds are and we are collaborating with groups in the Baylor College of Medicine on pharmacological small-molecule drug discovery.”

Funded by a five-year National Institutes of Health grant, Gao’s research plumbs fungal genomes in search of gene clusters that synthesize NPs. “Approximately 50% of clinical drugs approved by the U.S. Food and Drug Administration are NPs or NP-derivatives,” and fungi-derived NPs “are an essential pharmaceutical source,” she said. Penicillin, lovastatin and cyclosporine are some examples of drugs derived from fungal NPs.

Gao, the T.N. Law Assistant Professor of Chemical and Biomolecular Engineering and an assistant professor of bioengineering and chemistry, is a 2022 recipient of the prestigious CAREER Award from the National Science Foundation. Her lab’s previous discoveries include a fungal biocatalyst that drugmakers can use to control a molecule’s 3D structure and a tool to detect RNA from SARS-CoV-2, the virus that causes COVID-19.

The National Institutes of Health (GM138207) and the Robert A. Welch Foundation (C-1952) supported the research.

 

-30-

Peer-reviewed paper:

“Multiplex Base-Editing Enables Combinatorial Epigenetic Regulation for Genome Mining of Fungal Natural Products,” Journal of the American Chemical Society, DOI: 10.1021/jacs.2c10211.

https://pubs.acs.org/doi/full/10.1021/jacs.2c10211.

Authors: Fanglong Zhao, Chunxiao Sun, Zhiwen Liu, Alan Cabrera, Mario Escobar, Shunyu Huang, Qichen Yuan, Qiuyue Nie, Kevin Lee Luo, Angela Lin, Jeffrey A. Vanegas, Tong Zhu, Isaac B. Hilton, and Xue Gao.

This news release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related stories:

Xue Sherry Gao wins CAREER Award: https://news.rice.edu/news/2022/xue-sherry-gao-wins-career-award

Enzyme from fungi shows molecules which way to turn: https://news.rice.edu/news/2021/enzyme-fungi-shows-molecules-which-way-turn

RNA-editing tool a fast, sensitive test for COVID-19: https://news.rice.edu/news/2022/rna-editing-tool-fast-sensitive-test-covid-19

Engineers enlist fungi to advance against disease: https://news.rice.edu/news/2020/engineers-enlist-fungi-advance-against-disease

Links:

The Gao Laboratory: https://gaolab.rice.edu

Department of Chemical and Biomolecular Engineering: https://chbe.rice.edu/

George R. Brown School of Engineering: https://engineering.rice.edu

High-resolution IMAGES are available for download at:

https://news-network.rice.edu/news/files/2023/01/010423_MBE_postdoc_LG.jpg
CAPTION: Chunxiao Sun (Photo courtesy of Gao lab/Rice University)

https://news-network.rice.edu/news/files/2023/01/010423-MBE-Gao_LG.jpg
CAPTION: Xue Sherry Gao (Photo by Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2023/01/010423_MBE_fungicolor_LG.jpg
CAPTION: Engineers at Rice University used base-editing to change pigmentation in Aspergillus nidulans fungi colonies. (Image courtesy of Gao lab/Rice University)

https://news-network.rice.edu/news/files/2023/01/010423_MBE_5new_LG.jpg
CAPTION: Five new compounds discovered in one multiplex base-editing assay. Gao and collaborators are working on uncovering new compounds’ potential for small-molecule drug discovery and development. (Image courtesy of Gao lab/Rice University)

https://news-network.rice.edu/news/files/2023/01/010423_MBE_baseeds_LG.jpg
CAPTION: Guide RNA leads multiple base editors to their target base pairs in the fungal genome. (Photo courtesy of Gao lab/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 4,240 undergraduates and 3,972 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

 

 



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.2c10211

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Multiplex Base-Editing Enables Combinatorial Epigenetic Regulation for Genome Mining of Fungal Natural Products

Article Publication Date

21-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

The Laser setup in research

An illuminated water droplet creates an ‘optical atom’

January 31, 2023
Drilling the ice core

Monitoring an ‘anti-greenhouse’ gas: Dimethyl sulfide in Arctic air

January 31, 2023

$1M grant to U chemists could accelerate drug development

January 30, 2023

New method to control electron spin paves the way for efficient quantum computers

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

An illuminated water droplet creates an ‘optical atom’

Connections between peripheral artery disease, negative social determinants of health like poverty may lead to earlier diagnosis, intervention in at-risk Blacks

Monitoring an ‘anti-greenhouse’ gas: Dimethyl sulfide in Arctic air

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In