• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, June 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Rice, Baylor College of Medicine centers jointly award seed grants

Bioengineer by Bioengineer
April 30, 2024
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rice University’s Synthesis X Center (SynthX) and Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center have jointly awarded their first innovation seed grants to three teams of research collaborators from Rice and Baylor.

Rice Synth Center

Credit: Photo by Rice University

Rice University’s Synthesis X Center (SynthX) and Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center have jointly awarded their first innovation seed grants to three teams of research collaborators from Rice and Baylor.

Launched this spring, SynthX fosters the development of groundbreaking cancer drugs and technologies by encouraging primary researchers and clinicians to collaborate on research that integrates advances in organic chemistry, chemical biology and material chemistry into clinical practice.

Managed by Rice’s office for Educational and Research Initiatives for Collaborative Health (ENRICH), each of the two-year SynthX/Duncan Center seed grants provides up to $80,000 to help research teams initiate projects and amass the preliminary data that’s needed to apply for more substantial awards from federal or international funding agencies. Teams must include one or more principal investigators (PI) from both Rice and Baylor. Three quarters of funds will be provided in year one, and the remainder will be extended to teams that produce multi-PI grant submissions within the first year.

Inaugural grants were awarded to:

  • Baylor’s Pabel Miah , assistant professor of surgery, and Rice’s Lei Li , assistant professor of electrical and computer engineering, for the development and optimization of high-resolution imaging technology to guide the surgical removal of breast cancer tumors. Miah and Li plan to combine photoacoustic and ultrasound technologies to create a real-time imaging system that allows surgeons to directly visualize tumors they could not otherwise see. The technology could improve surgical outcomes and eliminate the need for costly and invasive “tumor localization” procedures that patients often undergo today.

  • Baylor’s Xin Li , instructor of biochemistry and molecular pharmacology, and Yongcheng Song , professor of biochemistry and molecular pharmacology, and Rice’s James Tour , the T.T. and W.F. Chao Professor of Chemistry, for the creation of a precision leukemia treatment that uses molecular jackhammers , molecules invented in Tour’s lab. When activated by a specific frequency of near-infrared light, molecular jackhammers vibrate more than a trillion times per second, so rapidly that their vibrations can disrupt or kill nearby cancer cells. Tour, Li and Song hope to create a treatment that uses molecular jackhammers to disrupt the activity of a transcription protein called ENL that helps fuel the growth of leukemia cells in several acute forms of the disease.

  • Baylor’s Ruhee Dere , associate professor of medicine, and Rice’s Anna-Karin Gustavsson , assistant professor of chemistry, to investigate the mechanism of a cancer-associated enzyme called lysine demethylase 4A (KDM4A) and search for ways to exploit the mechanism to drive cancer cells to kill themselves. In healthy bodies, aberrant or unhealthy cells often kill themselves via apoptosis, or programmed cell death. The circumvention of this process contributes to rapid cell division and tumor growth in many forms of cancer. Previous studies have shown that KDM4A becomes concentrated in structures called centrosomes as cells are preparing to divide, and that low levels of KDM4A can disrupt cell division and cause cells to behave in ways that are reminiscent of cancer. Dere and Gustavsson are working to identify KDM4A’s centrosome-specific partners and to explore how the enzyme’s relationships with those partners may be used to trigger programmed cell death in cancer cells.

By Jade Boyd
Special to Rice News



Share12Tweet8Share2ShareShareShare2

Related Posts

Reversible Control of Polymer Linear Conjugation

Reversible Control of Polymer Linear Conjugation

June 20, 2025
Robert Paton research

New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

June 19, 2025

Scientists Achieve Ultra-Precise Optical Clock Signal Transmission Through Multicore Fiber

June 19, 2025

Lanthanide–Carbon Triple Bond Trapped Inside Fullerene

June 19, 2025

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    161 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    71 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Organoid Model Reveals Residual Colorectal Cancer Stem Cells

Terahertz Spectroscopy Maps Buried PN Junction Depths

Revolutionizing Rehabilitation: Virtual Reality Offers New Hope for Stroke Survivors to Recover Movement

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.