• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, October 1, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Revolutionizing optical control with topological edge states

Bioengineer by Bioengineer
June 6, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Nanophotonics and topology have gained significant interest due to the unique properties they offer. One area of focus is the investigation of topological edge states (TESs). These states have captured widespread attention because they are very resistant to errors and imperfections. Arising from topologically nontrivial phases, TESs provide a powerful toolkit for the architectural design of photonic integrated circuits. TES transport has led to the discovery of various intriguing optical effects and applications, including directional couplers, one-way waveguides, mode-locked waveguides, and pseudospin propagation in ring resonator arrays.

Manipulating topological edge states for optical channel switcher.

Credit: Bing-Cong Xu.

Nanophotonics and topology have gained significant interest due to the unique properties they offer. One area of focus is the investigation of topological edge states (TESs). These states have captured widespread attention because they are very resistant to errors and imperfections. Arising from topologically nontrivial phases, TESs provide a powerful toolkit for the architectural design of photonic integrated circuits. TES transport has led to the discovery of various intriguing optical effects and applications, including directional couplers, one-way waveguides, mode-locked waveguides, and pseudospin propagation in ring resonator arrays.

Scientists have recently expanded their efforts to manipulate TESs by exploring techniques such as adiabatic modulation, nonlinear effects, and complex braiding. Optical systems have demonstrated a range of intriguing phenomena, such as edge-to-edge topological transport and tunable localization of topological states. These phenomena hold immense potential for the development of cutting-edge technologies and applications, including energy and information routing, nonlinear photonics, and quantum computing.

While current methods focus on manipulating TESs, they have not yet paid much attention to enhancing the interaction between TESs.  By improving the coupling between TESs, researchers can enable the exchange of light energy between different parts of a topological lattice, which can help control the transport of TESs in a more flexible way.

A group of researchers from the Wuhan National Laboratory for Optoelectronics (WNLO) and the School of Optical and Electronic Information (OEI) at Huazhong University of Science and Technology (HUST) in China recently made a significant breakthrough. As reported in Advanced Photonics, they developed an innovative approach to efficiently manipulate TES transport for an optical channel switcher on a silicon-on-insulator (SOI) chip. Their study focused on edge-to-edge channel conversion in a four-level waveguide lattice using the Landau-Zener (LZ) model. By exploiting the finite-size effect in a two-unit-cell optical lattice, they established an alternative, effective, and dynamic method to modulate and control the transport of topological modes.

The waveguide lattice they used is similar to a 2D material called a Chern insulator, which is known to have TESs. As the number of unit cells decreases, the TESs evolve according to the LZ model. By applying the LZ single-band evolution principle, the researchers were able to dynamically control the TESs and achieve almost perfect channel conversion.

Topological LZ nanophotonic devices have the potential to be used in various other applications. They can be used as switches that work at specific wavelengths of light. By incorporating LZ dynamics into different systems, it may be possible to create chiral channel conversions. This concept can also be expanded to more complex waveguide lattices, allowing for even more advanced devices.

The researchers found that these topological LZ optical devices are quite robust, meaning they can work well even when certain parameters are changed. This opens opportunities to develop practical devices such as optical switches for routing networks on computer chips or devices that can combine or separate multiple signals in a waveguide.

Read the Gold Open Access article by B.-C. Xu, B.-Y Xie, L.-H. Xu, et al., “Topological Landau–Zener nanophotonic circuits,” Adv. Photon. 5(3), 036005 (2023), doi 10.1117/1.AP.5.3.036005.



Journal

Advanced Photonics

DOI

10.1117/1.AP.5.3.036005

Article Title

Topological Landau–Zener nanophotonic circuits

Article Publication Date

1-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Schematic application of AEM with multiple cationic side alkyl chains

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

September 30, 2023
New polyion complex for CAR T-cell therapy.

Hairy polymer balls help get genetic blueprints inside T-cells for blood cancer therapy

September 30, 2023

New study will examine irritable bowel syndrome as long COVID symptom

September 29, 2023

True progression or pseudoprogression in glioblastoma patients?

September 29, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

Hairy polymer balls help get genetic blueprints inside T-cells for blood cancer therapy

New study will examine irritable bowel syndrome as long COVID symptom

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In