• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Reverse engineering 3D chromosome models for individual cells

Bioengineer by Bioengineer
January 14, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Distant genes can be neighbors

IMAGE

Credit: UIC

Genome analysis can provide information on genes and their location on a strand of DNA, but such analysis reveals little about their spatial location in relation to one another within chromosomes — the highly complex, three-dimensional structures that hold genetic information.

Chromosomes resemble a fuzzy “X” in microscopy images and can carry thousands of genes. They are formed when DNA winds around proteins — called histones — which are further folded into complexes called chromatin, which make up individual chromosomes.

Knowing which genes are located in spatial proximity within the chromatin is important because genes that are near each other generally work together.

Now, researchers at the University of Illinois Chicago report on a computational technique that uses heat map data to reverse engineer highly detailed models of chromosomes. Through this work, the researchers have uncovered new information about the close spatial relationships that chromatin folding creates between genes that can be highly distant from one another along DNA strands.

Their findings are published in the journal Nature Communications.

“Folding of the chromatin brings genes that are far away from each other into close proximity. If we know that certain groups of genes are spatial neighbors because of this folding, that tells us they most likely work together to drive processes such as the development of immunity, or even more fundamental processes like development or cell differentiation,” said Jie Liang, UIC Richard and Loan Hill Professor of Bioengineering and a corresponding author on the paper. “This is important for better understanding these processes or development of new therapeutics to prevent or treat cancer and other diseases.”

Liang and his colleagues developed a way to reverse engineer the complex structures of individual chromosomes using information from a process called Hi-C. Hi-C generates heat maps based on probabilities reflecting which genes are most likely to be spatially close to one another. These heat maps can provide approximate three-dimensional information on how chromosomes are organized, but because they are based on genetic material from multiple cells, the maps represent average likelihoods of proximity between genes, not exact locations.

Liang and colleagues looked at Hi-C heat maps of chromosomes from cells of fruit fly embryos, which have only eight chromosomes. They used these heat maps together with new advanced computational methods to generate extremely detailed three-dimensional maps of the chromosomes of individual cells.

“For the first time, we are able to produce single-cell models that accurately represent genetic spatial relationships within chromosomes,” Liang said. “With these models, we can uncover rich biological patterns and answer basic biological questions about three-dimensional structural changes chromosomes undergo to cause stem cells to develop into different tissues, and how malfunctions in these processes lead to diseases such as cancer.”

###

UIC’s Alan Perez-Rathke is a co-author on the paper. Qiu Sun, Daniel Czajkowsky and Zhifeng Shao of Shanghai Jiao Tong University are also co-authors.

This work is supported by grants from the National Key Research and Development Program of China (2018YFC1003500, CAS18H100000104 and NSFC81627801) and the National Institutes of Health (R35GM127084).

Media Contact
Jackie Carey
[email protected]

Original Source

https://today.uic.edu/reverse-engineering-3d-chromosome-models-from-individual-cells

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-20490-9

Tags: BiochemistryCell BiologyGene TherapyGenesGeneticsMedicine/HealthMicrobiologyTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Predicting Hidden Cervical Cancer via Cytology, ECC

August 3, 2025
blank

High-Capacity Phase-Sensitive Amplification In Fiber

August 3, 2025

Old Mitochondria Drive Stem Cell Niche Renewal

August 3, 2025

Tyrosine Kinase Inhibitors: New Frontiers in Colorectal Cancer

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    48 shares
    Share 19 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predicting Hidden Cervical Cancer via Cytology, ECC

High-Capacity Phase-Sensitive Amplification In Fiber

Old Mitochondria Drive Stem Cell Niche Renewal

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.