• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 3, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Respiratory viral pathogens, quickly caught on-site!

Bioengineer by Bioengineer
April 15, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Korea Institute of Materials Science/Samsung Medical Center, Rapid and sensitive multiplex molecular diagnosis of respiratory pathogens using plasmonic isothermal RPA array chip

IMAGE

Credit: Korea Institute of Materials Science (KIMS)

Researchers in South Korea developed a plasmonic isothermal recombinase polymerase amplification (RPA) array chip, the world’s first plasmoinc isothermal PCR technology which can detect 8 types of pathogens (4 bacteria and 4 viruses) that cause acute respiratory infectious diseases in 30 minutes, led by Dr. Sung-Gyu Park and Dr. Ho Sang Jung of the Korea Institute of Materials Science (KIMS, President Jung-Hwan Lee) and by Dr. Min-Young Lee and Dr. Ayoung Woo of Samsung Medical Center. KIMS is a government-funded research institute under the Ministry of Science and ICT.

* PCR(Polymerase Chain Reaction): A test method to amplify and detect nucleic acids target

The current detection technology for COVID-19 is impossible to analyze on-site as it takes about 4 hours or more to be confirmed after specimen collection, making it difficult to isolate the infectee as soon as possible.

To solve this problem, the researchers combined isothermal PCR technology with 3D Au nanostructured substrate which can amplify the fluorescence signal of RPA products with DNA amplicons and sucessfully detected bacterial DNA and viral RNA within 30 minutes.

In addition, the research team also developed a 3D plasmonic array chip for multiplex molecular detections: a chip that can simultaneously analyze 8 pathogens(4 bacteria and 4 viruses).

* 4 bacteria: Streptococcus pneumoniae, Haemophilus influenzae, Chlamydia pneumoniae, Mycoplasma pneumoniae

* 4 viruses: Coronavirus 229E, OC42, NL63(Coronavirus 229E, OC43, NL63), Human metapneumovirus

The “multiplex diagnosis technology for acute respiratory infections” was also confirmed to be valid for clinical specimens collected by nasopharyngeal swabs. The team is planning to perform the reliability test of medical devices through large-scale clinical trials on COVID-19 infectees and applying for approval from the Ministry of Food and Drug Safety.

The “3D plasmonic nanomaterials technology for enhancing optical signal” of KIMS has already been patented in Korea, the US, and China, and the “on-site rapid pathogen detection technology” has been applied for a domestic patent jointly with Samsung Medical Center.

“We developed a medical device that can detect pathogens in half an hour on-site, by developing core plasmonic nanomaterials which enable ultra-sensitive pathogene diagnosis of more than 10 types of respiratory viral pathogens. The on-site molecular diagnostic devices can be prevalent rapidly as we actively research with Samsung Medical Center and domestic diagnostic device companies.” said Dr. Sung-Gyu Park, a principal research scientist of KIMS.

Jung-hwan Lee, the president of KIMS said, “KIMS consistently supports to commercialize the on-site molecular diagnosis technology for respiratory infectious disease and ultrasensitive drug detection sensor technology which are based on the 3D highly sensitive plasmonic nanomaterials. We will do our utmost so that our research outcomes contribute to the quality of life and safe society.”

###

This research was supported by the Fundamental Research Program of the Korea Institute of Materials Science (KIMS) and funded by Nano Plasmonic In Vitro Diagnostic Research Center of the Ministry of Science and ICT, and the alchemist project of the Ministry of Trade, Industry and Energy.

Also, the technology was published in Biosensors and Bioelectronics (IF:10.257), the principal international journal in the field of analytical chemistry.

* Research paper title: Rapid and sensitive multiplex molecular diagnosis of respiratory pathogens using plasmonic isothermal RPA array chip

The research team was selected as a national R&D excellence in 2020 by developing an ultra-sensitive detection sensor for sepsis through a 3D nano-biosensor chip.

About Korea Institute of Materials Science (KIMS)

KIMS is a non-profit government-funded research institute under the Ministry of Science and ICT (MSIT) of the Republic of Korea. As the only institute specializing in comprehensive materials technologies in Korea, KIMS has contributed to Korean industry by carrying out a wide range of activities related to materials science including R&D, inspection, testing&evaluation, and technology support.

Media Contact
LEE, Donggee
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.bios.2021.113167

Tags: Chemistry/Physics/Materials SciencesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Stepwise Catalytic Method Enables Diverse P(V) Stereochemistry

Stepwise Catalytic Method Enables Diverse P(V) Stereochemistry

January 2, 2026
Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    116 shares
    Share 46 Tweet 29
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Layered GeS2 Sets Refractive Index Records

Envisioning Team-Based Rehabilitation for Brain Injury

Riemannian Denoising Model Achieves Accurate Molecular Optimization

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.