• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, May 20, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Resistance to COVID-19 drug detected in lab study

Bioengineer by Bioengineer
May 4, 2022
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The virus that causes COVID-19 can develop partial resistance to the antiviral drug remdesivir during infection of cultured cells in the laboratory by more than one mechanism.  

Dr, Mark Denison

Credit: Vanderbilt University Medical Center

The virus that causes COVID-19 can develop partial resistance to the antiviral drug remdesivir during infection of cultured cells in the laboratory by more than one mechanism.  

The results of the laboratory study led by researchers at Vanderbilt University Medical Center and published in the journal Science Translational Medicine support the importance of monitoring for resistance and its mechanisms, tracking specific mutations and developing combination therapies.

“Remdesivir is a critical antiviral in our armamentarium to treat COVID infections and limit illness, hospitalization and death,” said Mark R. Denison, MD, an internationally known authority on coronavirus biology at VUMC who led the study with colleagues from the University of Alberta, Canada, the University of North Carolina at Chapel Hill, and Gilead Sciences.

“To date, there have been very few reports of resistance to remdesivir in clinical practice,” said Denison, the Edward Claiborne Stahlman Professor of Pediatric Physiology and Cell Metabolism at VUMC. “We must be sure that we can continue to use this antiviral against COVID, future human coronaviruses and potentially even against our known human coronaviruses.

“So, it is critical to understand how coronaviruses might try to escape from the drug, and to use that data to monitor for any potential emergence of resistance in COVID-19 patients,” he said.  

Denison’s lab and collaborators contributed to the initial development of remdesivir, which was approved by the U.S. Food and Drug Administration as the first drug treatment for COVID-19 in both hospitalized and non-hospitalized patients as young as 12. Last month the FDA approved its use in high-risk children as young as 28 days.

Given by intravenous injection, remdesivir stops the virus, SARS-CoV-2, by preventing its RNA genome from being copied.

In the current report, the investigators led by Laura Stevens, MS, and Andrea Pruijssers, PhD, at VUMC showed that upon repeated exposure to the parent nucleoside (compound) of remdesivir in cell culture, SARS-CoV-2 developed mutations in the polymerase enzyme that copies its RNA genome.

These mutations, which emerged after prolonged passaging of virus in the presence of the drug, enabled SARS-CoV-2 to partially evade remdesivir’s antiviral effect. The mutations also could confer resistance in a mouse coronavirus that does not infect humans.

Biochemical studies from the laboratory of Matthias Götte, PhD, at the University of Alberta showed that the mutations resisted remdesivir by two distinct mechanisms.

Other VUMC contributors to the study included Tia Hughes, MS, and Xioatao Lu, MS, Amelia George, MS, and Jennifer Gribble, BS.

The study was supported in part by National Institutes of Health grants AI132178 and AI108197, and by the Canadian Institutes of Health Research and the Antimicrobial Resistance – One Health Consortium in Alberta.



Journal

Science Translational Medicine

DOI

10.1126/scitranslmed.abo0718

Article Title

Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms

Article Publication Date

28-Apr-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

6° Convegno di Fondazione Arianna e Anticoagulazione.it

Venous thromboembolism: Less recurrencies with low-dose apixaban compared to discontinuation of the anticoagulant after negative D-dimer

May 20, 2022
Insomnia

Insomnia in midlife may manifest as cognitive problems in retirement age

May 20, 2022

Scientists devise method to prevent deadly hospital infections without antibiotics

May 19, 2022

Some people fared better than others during COVID-19 pandemic due to genetics

May 19, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonZoology/Veterinary ScienceWeather/StormsVaccineVehiclesVirusVirologyViolence/CriminalsWeaponryUrbanizationVaccinesUrogenital System

Recent Posts

  • Topography and soil pH steer the activity-density and spatial distribution of termites in a fine-scale study
  • Surprising turbulence
  • Electrons in a crystal exhibit linked and knotted quantum twists
  • Designers find better solutions with computer assistance, but sacrifice creative touch
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....