• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Resistance to COVID-19 drug detected in lab study

Bioengineer by Bioengineer
May 4, 2022
in Health
Reading Time: 3 mins read
0
Dr, Mark Denison
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The virus that causes COVID-19 can develop partial resistance to the antiviral drug remdesivir during infection of cultured cells in the laboratory by more than one mechanism.  

Dr, Mark Denison

Credit: Vanderbilt University Medical Center

The virus that causes COVID-19 can develop partial resistance to the antiviral drug remdesivir during infection of cultured cells in the laboratory by more than one mechanism.  

The results of the laboratory study led by researchers at Vanderbilt University Medical Center and published in the journal Science Translational Medicine support the importance of monitoring for resistance and its mechanisms, tracking specific mutations and developing combination therapies.

“Remdesivir is a critical antiviral in our armamentarium to treat COVID infections and limit illness, hospitalization and death,” said Mark R. Denison, MD, an internationally known authority on coronavirus biology at VUMC who led the study with colleagues from the University of Alberta, Canada, the University of North Carolina at Chapel Hill, and Gilead Sciences.

“To date, there have been very few reports of resistance to remdesivir in clinical practice,” said Denison, the Edward Claiborne Stahlman Professor of Pediatric Physiology and Cell Metabolism at VUMC. “We must be sure that we can continue to use this antiviral against COVID, future human coronaviruses and potentially even against our known human coronaviruses.

“So, it is critical to understand how coronaviruses might try to escape from the drug, and to use that data to monitor for any potential emergence of resistance in COVID-19 patients,” he said.  

Denison’s lab and collaborators contributed to the initial development of remdesivir, which was approved by the U.S. Food and Drug Administration as the first drug treatment for COVID-19 in both hospitalized and non-hospitalized patients as young as 12. Last month the FDA approved its use in high-risk children as young as 28 days.

Given by intravenous injection, remdesivir stops the virus, SARS-CoV-2, by preventing its RNA genome from being copied.

In the current report, the investigators led by Laura Stevens, MS, and Andrea Pruijssers, PhD, at VUMC showed that upon repeated exposure to the parent nucleoside (compound) of remdesivir in cell culture, SARS-CoV-2 developed mutations in the polymerase enzyme that copies its RNA genome.

These mutations, which emerged after prolonged passaging of virus in the presence of the drug, enabled SARS-CoV-2 to partially evade remdesivir’s antiviral effect. The mutations also could confer resistance in a mouse coronavirus that does not infect humans.

Biochemical studies from the laboratory of Matthias Götte, PhD, at the University of Alberta showed that the mutations resisted remdesivir by two distinct mechanisms.

Other VUMC contributors to the study included Tia Hughes, MS, and Xioatao Lu, MS, Amelia George, MS, and Jennifer Gribble, BS.

The study was supported in part by National Institutes of Health grants AI132178 and AI108197, and by the Canadian Institutes of Health Research and the Antimicrobial Resistance – One Health Consortium in Alberta.



Journal

Science Translational Medicine

DOI

10.1126/scitranslmed.abo0718

Article Title

Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms

Article Publication Date

28-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Witten/Herdecke University Partners with JMIR Publications for Flat-Fee Unlimited Open Access Publishing via ZBMed

September 19, 2025

Breakthrough High-Sensitivity Omnidirectional Strain Sensor Developed Using Two-Dimensional Materials

September 19, 2025

Eating More Legumes and Less Red and Processed Meat Could Significantly Boost Men’s Health

September 19, 2025

Plasma Metabolome Links to Health in 274,241 Adults

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Soil Carbon: Benefits of Waste-Derived Fertilizers

Witten/Herdecke University Partners with JMIR Publications for Flat-Fee Unlimited Open Access Publishing via ZBMed

Breakthrough in Two-Photon Upconversion: 2D Excitons Power Giant Boost in Doubly-Resonant Plasmonic Nanocavities

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.