• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers zero-in on cholesterol’s role in cells

Bioengineer by Bioengineer
January 17, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UIC

Scientists have long puzzled over cholesterol. It's biologically necessary; it's observably harmful – and nobody knows what it's doing where it's most abundant in cells: in the cell membrane.

Now, for the first time, chemists at the University of Illinois at Chicago have used a path-breaking optical imaging technique to pinpoint cholesterol's location and movement within the membrane. They made the surprising finding that, in addition to its many other biological roles, cholesterol is a signaling molecule that transmits messages across the cell membrane.

The finding is reported in Nature Chemical Biology.

"Cholesterol is a lipid that gets bad press because of its association with cardiovascular disease," says Wonhwa Cho, professor of chemistry at UIC, who led the research. "It's been very well studied, but not much is known about its cellular function. What is its role? Is it a bad lipid? Absolutely not – for example, the brain is about half lipid, and cholesterol is the richest lipid in the brain," he said. A cholesterol deficiency can cause several diseases, and the substance is the starting material for making the body's dozen or so steroid hormones.

Cho's earlier studies showed cholesterol interacts with many regulatory molecules – mostly cellular proteins – but it was never thought to be one.

"We knew it could play an important role in cell regulation – for example, in proliferation or development," he said. "We know that high-fat diets, which boost cholesterol levels, have been linked to an elevated incidence of cancer. How, is not fully understood," Cho said.

One of the biggest problems conceptually, he said, is that a regulatory or signaling lipid should exist only transiently to transmit the message.

"But cholesterol is there all the time," he said. The membrane contains up to 90 percent of a cell's total cholesterol, and cholesterol makes up about 40 percent of the membrane lipids.

Cholesterol lends stability to the membrane, which is actually a double layer of lipid – or fat – molecules. The cholesterol gathers into "rafts," which were thought to serve as platforms from which other signaling molecules might operate.

"But in this paper, we showed that a single cholesterol molecule can itself be the signal trigger," Cho said.

Until now, scientists believed cholesterol was in both layers of the membrane, Cho said, "maybe more in the inner layer. But we, for the first time, measured cholesterol levels in the inner and outer layers simultaneously in real time, in living cells. And we showed that cholesterol is predominantly in the outer layer."

Cholesterol makes up about 40 percent of the outer layer of the membrane, they found, and only about 3 percent of the inner layer. In response to a specific cell stimulus, the amount in the inner layer more than doubles, and the level in the outer layer drops by the same amount.

They also found that, while in normal cells the concentration of cholesterol in the inner layer is low, in cancer cells it's much higher. "We checked this in many different cell lines," Cho said.

The new study sheds some light on the positive side effect of statin drugs lowering cancer risk. Cho and his coworkers found that treating cells with a statin dramatically lowered the level of cholesterol in the inner layer, leading to suppression of cell growth activity. This suggests a new way to treat cancer through pharmacological modulation of the cellular cholesterol level, Cho said.

"I think we're just scratching the surface of the regulatory role of cholesterol. We have many unpublished data indicating that cholesterol is involved in a wide variety of cellular processes and regulation," he said.

Lipids like cholesterol are "very nasty molecules to work with," Cho says, because they can't be dissolved in water like most biological molecules. This makes quantitative techniques very challenging.

"We had to devise a new strategy," he said. Six years ago, he and his colleagues developed an optical imaging technology that allows direct quantification of lipids in living cells. They tagged a lipid-binding protein molecule with a fluorescent sensor that changes color when it binds lipid. The color-change indicates the ratio of bound to free lipid, letting them determine how much of the lipid is at a given location in the cell membrane.

###

Co-authors on the study are Shu-Lin Liu, Ren Sheng, Li Wang, Ewa Stec, Matthew J. O'Connor, Seohyoen Song and Daesung Lee of the UIC department of chemistry; Rama Kamesh Bikkavilli, Robert A. Winn and Irena Levitan of the UIC College of Medicine; Jae Hun Jung, Kwanghee Baek and Kwang-Pyo Kim of Kyung Hee University in Korea; and Kazumitsu Ueda of Kyoto University in Japan.

The research was supported by grants from the National Institutes of Health (GM68849 and GM110128 to Cho, and HL-073965 and HL-083298 to Levitan) and from the Japan Society for the Promotion of Science (25221203 to Ueda).

Media Contact

Bill Burton
[email protected]
312-996-2269
@uicnews

http://www.uic.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Addiction-like Eating Tied to Deprivation and BMI

September 12, 2025

Mosquito Gene Response Reveals Japanese Encephalitis Entry

September 12, 2025

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

September 11, 2025

Poly-L-Histidine-Coated Nanoparticles for Targeted Doxorubicin Delivery

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addiction-like Eating Tied to Deprivation and BMI

Mosquito Gene Response Reveals Japanese Encephalitis Entry

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.