• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers use multivalent gold nanoparticles to develop efficient molecular probe

Bioengineer by Bioengineer
July 6, 2021
in Science News
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kaori Sakurai/ TUAT

Cells play a precise game of telephone, sending messages to each other that trigger actions further on. With clear signaling, the cells achieve their goals. In disease, however, the signals break up and result in confused messaging and unintended consequences. To help parse out these signals and how they function in health — and go awry in disease — scientists tag proteins with labels they can follow as the proteins interact with the molecular world around them.

The challenge is figuring out which proteins to label in the first place. Now, a team led by researchers from Tokyo University of Agriculture and Technology (TUAT) has developed a new approach to identifying and tagging the specific proteins. They published their results on June 1 in Angewandte Chemie, a journal of the German Chemical Society.

“We are interested in exploring protein receptors of certain carbohydrate molecules that are involved in mediating cell signaling, particularly in cancer cells,” said paper author Kaori Sakurai, associate professor in the Department of Biotechnology and Life Science at TUAT.

The carbohydrate molecules, called ligands, are typically expressed on the surface of cells and are known to dynamically form complexes with protein receptors to coordinate complicated cellular functions. However, Sakurai said, the proteins responsible for binding the carbohydrates have been difficult to identify because they bond so weakly with the molecules.

The researchers designed a new type of carbohydrate probe that would not only link to the molecules, but tightly bind to them.

“We used gold nanoparticles as a scaffold to attach both carbohydrate ligands and electrophiles — a chemical that loves to react with other molecules — in a multivalent fashion,” Sakurai said. “This way, we were able to greatly increase binding affinity and reaction efficiency toward carbohydrate-binding proteins.”

The researchers applied the designed probes to cell lysate, a fluid containing the innards of broken-apart cells.

“The probes quickly found the target carbohydrate-binding proteins, triggering the electrophilic groups to react with electron-donating amino acid residues on nearby proteins,” Sakurai said. “This resulted in proteins firmly cross-linked to the gold nanoparticles’ surface, making it easy to subsequently analyze their identities.”

The team evaluated several electrophilic groups to identify the most efficient type for labeling their target proteins.

“We found that a particular electrophilic group called aryl sulfonyl fluoride is best suited for affinity labeling of carbohydrate-binding proteins,” said co-author Nanako Suto, a graduate student in the Department of Biotechnology and Life Science of TUAT. “However, they have rarely been used to identify target proteins, presumably because they would non-selectively react with various other, undesired proteins.”

However, the scale of aryl sulfonyl fluoride use appears to mitigate the issue.

“The non-selectivity isn’t a problem if aryl sulfonyl fluoride is used at very low concentrations, at the range of the nanoscale,” said co-author Shione Kamoshita, also a graduate student in the Department of Biotechnology and Life Science, TUAT.

The gold nanoparticle scaffolding displays many copies of the electrophilic group, which keeps aryl sulfonyl fluoride’s local concentration high on the nanoparticle surface but restrains them from the general cell system and reacting to undesired proteins. With the high concentration at the nano-level, some copies of electrophilic groups can efficiently react with target proteins.

“Through this process, we were able to achieve highly efficient and selective affinity labeling of carbohydrate-binding proteins in cell lysate,” Sakurai said. “We will apply the new method in target identification of several cancer-related carbohydrate ligands and investigate their function in cancer development. In parallel, we aim to explore the general utility of this new probe design for various other bioactive small molecules, so that we can accelerate the elucidation of their mechanisms.”

###

Dr. Shoichi Hosoya, Institute of Research, Tokyo Medical and Dental University, also contributed to this paper.

The Japan Society for the Promotion of Science supported this research.

For more information about the Sakurai laboratory, please visit http://web.tuat.ac.jp/~sakurai/

Original publication:

“Exploration of the reactivity of multivalent electrophiles for affinity labeling: sulfonyl fluoride as a highly efficient and selective label”

Nanako Suto, Shione Kamoshita, Shoichi Hosoya and Kaori Sakurai

Angewandte Chemie International Edition

https://doi.org/10.1002/anie.202104347

About Tokyo University of Agriculture and Technology (TUAT):

TUAT is a distinguished university in Japan dedicated to science and technology. TUAT focuses on agriculture and engineering that form the foundation of industry, and promotes education and research fields that incorporate them. Boasting a history of over 140 years since our founding in 1874, TUAT continues to boldly take on new challenges and steadily promote fields. With high ethics, TUAT fulfills social responsibility in the capacity of transmitting science and technology information towards the construction of a sustainable society where both human beings and nature can thrive in a symbiotic relationship. For more information, please visit http://www.tuat.ac.jp/en/.

Contact:

Kaori Sakurai, Ph.D.

Associate Professor

Department of Biotechnology and Life Science

Tokyo University of Agriculture and Technology, Japan

[email protected]

Media Contact
Yutaka Nibu, Ph.D.
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/anie.202104347

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

July 20, 2025

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025

Pathology Multiplexing Revolutionizes Disease Mapping

July 20, 2025

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    57 shares
    Share 23 Tweet 14
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.