• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers unravel mechanisms that control cell size

Bioengineer by Bioengineer
May 19, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Team of biologists, engineers and physicists uncover origins of precise cellular reproduction

Credit: Jun Lab, UC San Diego

Working with bacteria, a multidisciplinary team at the University of California San Diego has provided new insight into a longstanding question in science: What are the underlying mechanisms that control the size of cells?

Nearly five years ago a team led by Suckjoon Jun, a biophysicist at UC San Diego, discovered that cell size is controlled by a fundamental process known as “the adder,” a function that guides cells to grow by a fixed added size from birth to division. Yet mysteries remained about the mechanisms behind the process, leading to a scientific race to find out.

Publishing their work in the May 16 issue of Current Biology, Jun, lead authors Fangwei Si and Guillaume Le Treut and their colleagues describe the inner workings of the adder. They found that the process, also known as “size homeostasis,” boils down to two required components: balanced synthesis of specific biological ingredients for cell division, including certain proteins; and a critical threshold that initiates the adder process when a sufficient number of such proteins accumulates. The adder process then follows from these two requirements, the scientists say.

“It’s a very robust mechanism because each cell is guaranteed to reach its target cell size whether it is born large or small,” said Jun, an associate professor in the Division of Biological Science’s Section of Molecular Biology and the Division of Physical Sciences’ Department of Physics. “The bottom line is that we found the adder is exclusively determined by some key proteins involved in cell division.”

Although the researchers discovered the mechanisms in bacteria Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis), they believe the process is general across many life forms.

Jun says the research team, made up of biologists, physicists and engineers, cracked the adder case after years of attempting an array of investigative methods and experimental approaches.

“Cell size homeostasis is a fundamental biological question and to our knowledge this is the first time we finally understand its mechanistic origin,” said Jun. “We would not have been able to solve this with pure physics or pure biology. It was a very multidisciplinary approach.”

The research team is now investigating whether the quantitative and mechanistic framework underlying the adder applies to other models such as yeast and cancer cells.

###

In addition to Si, Le Treut and Jun, coauthors of the paper include John Sauls of UC San Diego’s Department of Physics; and Stephen Vadia and Petra Anne Levin of Washington University in St. Louis.

Media Contact
Mario Aguilera
[email protected]

Original Source

https://ucsdnews.ucsd.edu/pressrelease/researchers_unravel_mechanisms_that_control_cell_size

Tags: BacteriologyBiologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyCell BiologyChemistry/Physics/Materials SciencesDevelopmental/Reproductive BiologyMolecular PhysicsTechnology/Engineering/Computer Science
Share14Tweet8Share2ShareShareShare2

Related Posts

blank

Most Precise Confirmation of Hawking’s Area Theorem from Clearest Black Hole Collision Signal Yet

September 10, 2025
Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

September 10, 2025

A Decade Later: Gravitational Waves Confirm Stephen Hawking’s Black Hole Area Theorem

September 10, 2025

When Magnetic Moments Clash: How Quantum Mechanics Unlocks the Secrets of Iron Catalysts

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    59 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lung Cancer Remodels Bone Marrow Immune Cells, Undermining the Body’s Defenses

ML Uncovers Transposable Elements Shaping Sorghum Traits

AI vs. Tumor Boards: Benchmarking Sarcoma Treatments

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.