• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, February 2, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers speed identification of DNA regions that regulate gene expression

Bioengineer by Bioengineer
May 6, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

St. Jude Children’s Research Hospital scientists have developed a highly efficient method to address a major challenge in biology–identifying the genetic ‘switches’ that regulate gene expression.

IMAGE

Credit: St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital scientists have developed an integrated, high-throughput system to better understand and possibly manipulate gene expression for treatment of disorders such as sickle cell disease and beta thalassemia. The research appears today in the journal Nature Genetics.

Researchers used the system to identify dozens of DNA regulatory elements that act together to orchestrate the switch from fetal to adult hemoglobin expression. The method can also be used to study other diseases that involve gene regulation.

Regulatory elements, also called genetic switches, are scattered throughout non-coding regions of DNA. These regions do not encode genes and make up about 98% of the genome. The elements have a variety of names–enhancer, repressor, insulator and more–but the specific genes they regulate, how the regulatory elements act together, and answers to other questions have been unclear.

“Without the high-throughput system, identifying key regulatory elements is often extremely slow,” said corresponding author Yong Cheng, Ph.D., of the St. Jude Departments of Hematology and Computational Biology. Mitchell Weiss, M.D., Ph.D., Hematology chair, is co-corresponding author.

“For example, despite decades of research, fewer than half of regulatory elements and the associated genetic variants that account for fetal hemoglobin levels have been identified,” Cheng said.

Precision editing provides key details about regulation of gene expression

The new system combines bioinformatic prediction algorithms and an adenine base editing tool with tests to measure how base gene editing affects gene expression. Base editing works more precisely than conventional gene-editing tools such as CRISPR/Cas9, by changing a single letter in the four-letter DNA alphabet at high efficiency without creating larger insertions or deletions.

Researchers used the base editor ABEmax to make 10,156 specific edits in 307 regulatory elements that were predicted to affect fetal hemoglobin expression. The expression can modify the severity of hemoglobin disorders such as sickle cell disease. The edits changed the DNA bases adenine and thymine to guanine and cytosine. The study focused on regulatory elements in the genes BCL11A, MYB-HBS1L, KLF1 and beta-like globin genes.

Using this approach, the scientists validated the few known regulatory elements of fetal hemoglobin expression and identified many new ones.

###

Media Contact
Katy Hobgood
[email protected]

Original Source

https://www.stjude.org/media-resources/news-releases/2021-medicine-science-news/researchers-speed-identification-of-dna-regions-that-regulate-gene-expression.html

Related Journal Article

http://dx.doi.org/10.1038/s41588-021-00861-8

Tags: Gene TherapyGenesGeneticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Unraveling Genome Growth in Acyclania tenebrosa

Unraveling Genome Growth in Acyclania tenebrosa

February 2, 2026
blank

Breakthrough Discovery Illuminates Key Evolutionary Milestone in Vertebrates

February 2, 2026

New Ladybird Beetle Species Discovered on Kyushu University Campus

February 1, 2026

Eosinophils Emerge as Promising Therapeutic Target in Chordoma, Reports Chinese Neurosurgical Journal

February 1, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    157 shares
    Share 63 Tweet 39
  • Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Integrated Acoustic Signatures Enhance Micro-Drone Detection

Peak Oxygen Consumption Modifies Obesity Paradox in Heart Failure

Unlocking Tumor Lymph Node Metastasis with Single-Cell Omics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.