• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers resolve magnetic structures of different topological semimetals

Bioengineer by Bioengineer
July 13, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ZHANG Lei

Topological semimetals are one of the major discoveries in condensed-matter physics in recent years. The magnetic Weyl semimetal, in which the Weyl nodes can be generated and modulated by magnetization, provides an ideal platform for the investigation of the magnetic field-tunable link between Weyl physics and magnetism.

But due to the lack of appropriate or high quality specimens, most of the theoretically expected magnetic topological semimetals have not been experimentally confirmed. Therefore, exploration of new magnetic topological semimetals is of great importance.

Recently, researchers from High Magnetic Field Laboratory of Hefei Institutes of Physical Science (HFIPS), in collaboration with researchers from Huazhong University of Science and Technology, and Anhui University, resolved magnetic structures of different topological semimetals with the help of Resistive Magnet of China’s Steady High Magnetic Field Facility (SHMFF), HFIPS.

The united team performed an investigation on high-quality single crystals of PrAlGe and DySb. For PrAlGe, the intrinsic ferromagnetic ordering acts as a Zeeman coupling to split the spin-up and spin-down bands, but the whole band structure is still kept. The study of magnetism suggests that the magnetic interaction in PrAlGe is of a two-dimensional Ising type, revealing a uniaxial magnetic interaction along the c axis. However, the ordering moments are tilted from the c axis, which causes antiferromagnetism in the ab plane. As for DySb, a field-induced tricritical phenomenon is revealed. Based on the magnetization analysis, a detailed H-T phase diagram around the phase transition is constructed when the magnetic field is applied along [001] direction.

This phase diagram is indicative of delicate competition and balance between multiple magnetic interactions in these systems and lays a solid foundation for future research in topological transition and criticality.

###

Media Contact
ZHAO Weiwei
[email protected]

Original Source

http://english.hf.cas.cn/new/news/rn/202106/t20210622_272377.html

Related Journal Article

http://dx.doi.org/10.1103/PhysRevB.103.214401

Tags: Chemistry/Physics/Materials SciencesMaterialsMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025
blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    66 shares
    Share 26 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Perspectives on Anorexia Nervosa Recovery: Lived Experiences vs. Professionals

Comparing Euploidy Rates in Progestin vs. GnRH

Booster Dose Enhances COVID Immunity in HIV Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.