• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers regenerate deactivated catalyst in methanol-to-olefins process

Bioengineer by Bioengineer
January 5, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: GAO Mingbin

MTO process, which was first commercialized in 2010, is a catalytic process converting methanol, which is typically made from coal, natural gas, biomass, and CO2, over SAPO-34 zeolite catalyst. It’s becoming one of the main streams for producing light olefins, including ethylene and propylene, from non-oil resources.

One of the major challenges in MTO is the rapid deactivation of zeolite catalyst due to the coke deposition.

In industrial practices, a fluidized bed reactor-regenerator configuration is normally used in order to maintain the continuous operation, in which air or oxygen is usually input to burn off the deposited coke to restore the catalyst activity in the regenerator. This involves the transformation of coke species to CO2, with a substantial fraction of carbon resource being converted to low-value greenhouse gas.

A research group led by Prof. YE Mao and Prof. LIU Zhongmin from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences regenerated deactivated catalyst in industrially important methanol-to-olefins (MTO) process by directly transforming the coke deposited on the zeolite catalyst to active intermediates rather than burning off to carbon oxide.

This work was published in Nature Communications on Jan. 4.

It was previously shown that MTO follows the hydrocarbon pool mechanism, i.e. the light olefins are favorably formed with the participation of active intermediate species, or called hydrocarbon pool species (HCPs), during the reaction. The HCPs will evolve into coke species that deactivate catalyst.

By using the density functional theory (DFT) calculations and multiple spectroscopy techniques, this team showed that naphthalenic cations, amongst HCPs, were highly stable within SAPO-34 zeolites at high temperature, and steam cracking could directionally transform the coke species in SAPO-34 zeolites to naphthalenic species at high temperature.

This technology not only recovers the catalyst activity but also promotes the formation of light olefins owing to the synergic effect imposed by naphthalenic species.

Furthermore, the researchers verified this technology in the fluidized bed reactor-regenerator pilot plant in DICP with industrial-alike continuous operations, achieving an unexpectedly high light olefins selectivity of 85% in MTO reaction and 88% valuable CO and H2 with negligible CO2 in regeneration.

This technology opens a new venue to control the selectivity of products via regeneration in industrial catalytic processes.

###

Media Contact
Jean Wang
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-20193-1

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Develop Model to Advance Sustainable Design, Groundwater Management, and Nuclear Waste Storage

Scientists Develop Model to Advance Sustainable Design, Groundwater Management, and Nuclear Waste Storage

October 9, 2025
Core Diversification with 1,2-Oxaborines: Versatile Platform

Core Diversification with 1,2-Oxaborines: Versatile Platform

October 9, 2025

Revealing Breakthrough Discoveries in Metals Manufacturing Physics

October 9, 2025

Transforming Bioplastics: Microbial Innovation Enables Fully Bio-Based Long-Chain Polyesters

October 9, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1175 shares
    Share 469 Tweet 293
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brain & Behavior Research Foundation Hosts 2025 International Symposium on Advances in Mental Health Research

Scientists Develop Model to Advance Sustainable Design, Groundwater Management, and Nuclear Waste Storage

Optimizing Lithium Extraction from Oilfield Brine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.