• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, February 3, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers realize synthetic gauge fields in single optomechanical resonator

Bioengineer by Bioengineer
April 1, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: CHEN Yuan et al.

The research team led by Prof. GUO Guangcan and Dr. DONG Chunhua from the University of Science and Technology of China realized synthetic gauge fields in a single optomechanical resonator by controlling geometric phase with the multimode interaction in the micro-resonator.

By engineering a Hamiltonian, uncharged particles or bosonic excitations can acquire a path-dependent phase which realizes a synthetic magnetic field. Such synthetic gauge field can improve the precision of quantum many-body simulation and control over bosons.

Previous works have realized synthetic gauge fields through coupled resonators, while this time the team realized synthetic gauge field in a single optomechanical resonator based on multimode interaction of microcavity.

The team proposed to employ clockwise and counterclockwise driving lasers into the microcavity simultaneously, which realized the coherent coupling between optical photons and phonons and achieved complete control over the coupling phase.

In the experiment, researchers proved that the coupling transport of optical photons between multiple modes would obtain a path-dependent phase, which can realize the equivalent synthetic magnetic field of optical photons.

Thanks to the advantages of microcavity optical field modulation, the team further realized the time-varying canonical phase and demonstrated the synthetic electric field of optical photons in a single optomechanical resonator.

Higher dimensional synthetic gauge field is indicated by the experiment results, in consideration of the strong coherent optomechanical coupling interaction and coherent nonlinear optical effects in microcavities.

The study was published on Physics Review Letters.

The synthetic fields shown in this work shed light on the topological properties of optical photons and realization of chiral edge states and topological protection.

###

Media Contact
Jane FAN Qiong
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.126.123603

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectromagneticsOpticsParticle PhysicsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Theoretical Insights into Cluster Radioactivity Under Intense Laser Fields

Theoretical Insights into Cluster Radioactivity Under Intense Laser Fields

February 3, 2026
Breakthrough in Highly Selective Asymmetric 1,6-Addition of Aliphatic Grignard Reagents to Unsaturated Carbonyl Compounds

Breakthrough in Highly Selective Asymmetric 1,6-Addition of Aliphatic Grignard Reagents to Unsaturated Carbonyl Compounds

February 2, 2026

Enhancing Efficiency in Robotic Joint Design

February 2, 2026

The Hidden Chemistry of Ozone: Unlocking the Secrets Behind Clean Air

February 2, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    157 shares
    Share 63 Tweet 39
  • Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TGF-β Genes: Key Insights for Pulmonary Fibrosis Treatment

Prolonged Skin Gene Silencing via Lipophilic siRNAs

Sexual Dimorphism in Cancer: Impacts on Precision Oncology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.