• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers promote cancer cell growth in the near infrared region by using silica coated gold nano

Bioengineer by Bioengineer
March 11, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Author


In a report published in NANO, a group of researchers from the Republic of Korea have discovered a method to promote cancer cell growth using silica-coated gold nanorods. The cell growth by near infrared (NIR) exposure of Si-AuNRs nano heat islands revealed a higher growth rate of 36.13% than the normal incubator condition.

Gold nanoparticles (AuNPs) have been brought to the forefront of cancer research in recent years. They possess a number of favourable properties such as ease of synthesis and surface modification, strongly enhanced and tunable optical properties as well as excellent biocompatibility for clinic setting. Gold nanorods (AuNRs) are considered suitable materials for diverse biomedical applications in controlling cell behaviors.

The nano island system with well dispersed silica coated Au nanorods (Si-AuNRs) was used to demonstrate the enhanced cell growth of normal and cancer cells from the induced expressions of the heat shock proteins. Heat shock proteins could hinder the formation of unwanted intermolecular bond when combined with unconjugated protein.

The researchers believe that the growth of cancer cells in near infrared region using Si-AuNRs induced the activities of heat shock proteins, which could help the protein folding in cell growth and survival in comparison to the cells grown in the incubator only. Unlike external heating sources, such as infrared radiation, steamed heats, or water bath, the internalized nanomaterials for mediating heats were effective with minimal side effects.

“The cell growth with NIR exposure to Si-AuNRs nano heat islands could be an alternative way to grow cells in comparison to the conventional system, such as an incubator. Such cells can be used in diverse cellular applications in future”, said lead investigator of study Dong Kee Yi.

###

This research was supported by the Korean National Research Foundation (NRF-2018R1A2B6007786).

Corresponding author for this work is Dong Kee Yi ([email protected]).

For more insight into the research described, readers are invited to access the paper on NANO.

IMAGE

Caption: The nano island system with well dispersed silica coated Au nanorods (Si-AuNRs) was used to demonstrate the enhanced the cell growth of normal and cancer cells from the induced expressions of the heat shock proteins (HSP). The over expressions of HSP could help in protein folding in cell proliferations and growths of both the normal and cancer cells. The cell growth enhancing technology could be expanded in diverse applications in cell culture systems.

NANO is an international peer-reviewed monthly journal for nanoscience and nanotechnology that presents forefront fundamental research and new emerging topics. It features timely scientific reports of new results and technical breakthroughs and publishes interesting review articles about recent hot issues.

About World Scientific Publishing Co.

World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 140 journals in various fields. World Scientific collaborates with prestigious organizations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit http://www.worldscientific.com.

For more information, contact Tay Yu Shan at [email protected].

Media Contact
Tay Yu Shan
[email protected]

Original Source

https://www.worldscientific.com/page/pressroom/2020-03-11-01

Related Journal Article

http://dx.doi.org/10.1142/S1793292020500010

Tags: Chemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

September 10, 2025
Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

September 10, 2025

Innovative Method Paves the Way for Unhindered Light Guidance

September 10, 2025

Most Precise Confirmation of Hawking’s Area Theorem from Clearest Black Hole Collision Signal Yet

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    61 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addressing Opioid Addiction in Jails Enhances Treatment Engagement and Lowers Overdose Deaths and Reincarceration Rates

Kennesaw State Researcher Pioneers New Frontiers for AI Beyond Cloud Technology

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.