• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers peer into atom-sized tunnels in hunt for better battery

Bioengineer by Bioengineer
December 8, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Reza Shahbazian-Yassar/UIC

Battery researchers seeking improved electrode materials have focused on "tunneled" structures that make it easier for charge-carrying ions to move in and out of the electrode. Now a team led by a researcher at the University of Illinois at Chicago has used a special electron microscope with atomic-level resolution to show that certain large ions can hold the tunnels open so that the charge-carrying ions can enter and exit the electrode easily and quickly.

The finding is reported in Nature Communications.

"Significant research has been done to increase the energy density and power density of lithium ion battery systems," says Reza Shahbazian-Yassar, associate professor of mechanical and industrial engineering at UIC.

The current generation, he said, is useful enough for portable devices, but the maximum energy and power that can be extracted is limiting.

"So for an electric car, we need to increase the energy and power of the battery — and decrease the cost as well," he said.

His team, which includes coworkers at Argonne National Laboratory, Michigan Technological Institute and the University of Bath in the U.K., has focused on developing a cathode based on manganese dioxide, a very low cost and environmentally-friendly material with high storage capacity.

Manganese dioxide has a lattice structure with regularly spaced tunnels that allow charge carriers — like lithium ions — to move in and out freely.

"But for the tunnels to survive for long-lasting function, they need support structures at the atomic scale," Shahbazian-Yassar said. "We call them tunnel stabilizers, and they are generally big, positive ions, like potassium or barium."

But the tunnel stabilizers, being positively charged like the lithium ions, should repel each other.

"If lithium goes in, will the tunnel stabilizer come out?" Shahbazian-Yassar shrugged. "The research community was in disagreement about the role of tunnel stabilizers during the transfer of lithium into tunnels. Does it help, or hurt?"

The new study represents the first use of electron microscopy to visualize the atomic structure of tunnels in a one-dimensional electrode material — which the researchers say had not previously been possible due to the difficulty of preparing samples. It took them two years to establish the procedure to look for tunnels in potassium-doped nanowires of manganese dioxide down to the single-atom level.

Yifei Yuan, a postdoctoral researcher working jointly at Argonne National Laboratory and UIC and the lead author on the study, was then able to use a powerful technique called aberration-corrected scanning transmission electron microscopy to image the tunnels at sub-ångstrom resolution so he could clearly see inside them — and he saw they do change in the presence of a stabilizer ion.

"It's a direct way to see the tunnels," Yuan said. "And we saw that when you add a tunnel stabilizer, the tunnels expand, their electronic structures also change, and such changes allow the lithium ions to move in and out, around the stabilizer."

The finding shows that tunnel stabilizers can help in the transfer of ions into tunnels and the rate of charge and discharge, Shahbazian-Yassar said. The presence of potassium ions in the tunnels improves the electronic conductivity of manganese dioxide and the ability of lithium ions to diffuse quickly in and out of the nanowires.

"With potassium ions staying in the center of the tunnels, the capacity retention improves by half under high cycling current, which means the battery can hold on to its capacity for a longer time," he said.

###

Co-authors on the Nature Communications paper are Kun He, Soroosh Sharifi-Asl, Boao Song and Anmin Nie of UIC; Chun Zhan, Zhenzhen Yang, Xiangyi Luo, Hao Wang, Khalil Amine and Jun Lu of Argonne; Hungru Chen, Stephen M. Wood and M. Saiful Islam of the University of Bath; and Wentao Yao of Michigan Tech.

Funding was provided by the National Science Foundation and the U.S. Department of Energy.

Media Contact

Bill Burton
[email protected]
312-996-2269
@uicnews

http://www.uic.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

High-performance transparent-flexible electronic devices based on copper-graphene nanowire

DGIST Professor Yoonkyu Lee’s research team has developed a high-performance transparent-flexible electronic device based on a copper-graphene nanowire synthesized by scintillation

March 31, 2023
2023 DGIST Commencement

DGIST held a graduation ceremony for the first half of 2023 (Feb.)

March 31, 2023

Do we understand the flickering flames?

March 31, 2023

Can we connect to a virtual world as in the movie “The Matrix”? Microrobot technology has been developed for externally connecting in vivo neural networks.

March 31, 2023
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    67 shares
    Share 27 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Extinction of steam locomotives derails assumptions about biological evolution

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

DGIST Professor Yoonkyu Lee’s research team has developed a high-performance transparent-flexible electronic device based on a copper-graphene nanowire synthesized by scintillation

DGIST held a graduation ceremony for the first half of 2023 (Feb.)

Do we understand the flickering flames?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In