• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers minimize quantum backaction in thermodynamic systems via entangled measurement

Bioengineer by Bioengineer
November 23, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: WU Kangda et al.

Led by academician Prof. GUO Guangcan from the Chinese Academy of Sciences (CAS), Prof. LI Chuanfeng’s group and Prof. XIANG Guoyong’s group from University of Science and Technology of China (USTC), CAS, in cooperation with theoretical physicists from Germany, Italy and Switzerland, conducted the first experiment using entangled collective measurement for minimizing quantum measurement backaction based on photonic system.

The result was published online in Physical Review Letters on Nov. 16.

When an observable object is measured twice on an evolving coherent quantum system, the first measurement usually changes the statistical information of the second measurement because the first measurement broke the quantum coherence of the system, which is called measurement backaction.

A former theoretical work of Dr. Mart í Perarnau Llobet in 2017 pointed out that, without violating the basic requirements of quantum thermodynamics, measurement backaction can’t be completely avoided, but the degree of backaction caused by projective measurement can be reduced through collective measurement.

Based on the above theoretical research results, Prof. XIANG and the coauthors realized the quantum collective measurement and successfully observed the reduction of measurement backaction in 2019.

Since the quantum collective measurements used in previous works were separable, a natural question can be raised: whether there is quantum entangled collective measurement which reduces more backaction than what we have achieved.

Prof. XIANG and his theoretical collaborators studied the optimal collective measurement in the two qubit system. They found that there is an optimal entanglement collective measurement theoretically, which can minimize the backaction in a two qubit system, and the backaction can be suppressed to zero in the case of strongly coherent evolution.

Then, they designed and implemented the entanglement measurement via photonic quantum walk with fidelity up to 98.5%, and observed the reduction of the reaction of projection measurement.

This work is significant to the study of collective measurement and quantum thermodynamics. The referees commented the work as representing a major advance in the field: “The experiment is well executed, as the results follow closely what one would expect from an ideal implementation. Overall, I find the article a highly interesting contribution to the topic of quantum backaction and a great combination of new theory and flawless experimental implementation.”

###

Media Contact
Jane FAN Qiong
[email protected]

Original Source

http://english.cas.cn/newsroom/research_news/phys/202011/t20201121_252890.shtml

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.125.210401

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microemulsions Enhance Resistance in Mycoplasma gallisepticum

Enhancing Patient Care with Continuous Medical Learning

Addiction-like Eating Tied to Deprivation and BMI

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.