• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, June 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers make breakthrough in high-pressure magnetic detection

Bioengineer by Bioengineer
March 23, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

According to a study published in Nature Materials, a collaborative research team from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences (CAS) and the University of Science and Technology of China has developed a research platform to study superconducting magnetic detection and magnetic phase transitions of hydrides under high pressure.

A designed silicon vacancy in Moissanite anvil cell to solve the problem of in-situ sensitive magnetic detection under high pressure

Credit: HFIPS

According to a study published in Nature Materials, a collaborative research team from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences (CAS) and the University of Science and Technology of China has developed a research platform to study superconducting magnetic detection and magnetic phase transitions of hydrides under high pressure.

High-resolution in-situ magnetic measurement under high pressure has been a challenge. It has limited the progress of research on the Meissner effect of superconductivity and on magnetic phase transition behavior under high pressure. Using the optically detected magnetic resonance (ODMR) technique on diamond nitrogen vacancy (NV) centers has helped in-situ detection of pressure-induced magnetic phase transitions. However, it is not convenient to analyze and interpret the measured ODMR spectra because the NV center has four axial directions and zero-field splitting is temperature dependent.

In this study, the researchers have for the first time realized high-pressure in-situ quantum magnetic detection based on the silicon vacancy (VSi) defects in silicon carbide and solved the problem of high-pressure magnetic detection.

The researchers used ion implantation to generate shallow VSi defects on the surface of a processed silicon carbide anvil cell. VSi defects in silicon carbide have only one axial direction. Due to the special symmetry of silicon carbide’s electronic structure, zero-field splitting is insensitive to temperature, thus the problem of temperature variations in high-pressure sensing can be avoided.

The researchers found that the spectrum of VSi defects shifted blue and the zero-field splitting value varied little with pressure (0.31 MHz/GPa)—much less than the slope of diamond NV centers (14.6 MHz/GPa). This is helpful for the measurement and analysis of ODMR spectra under high pressure.

By using ODMR technology on VSi defects, the researchers observed the pressure-induced magnetic phase transition of Nd2Fe14B magnets at about seven GPa, and measured the critical temperature-pressure phase diagram of the YBa2Cu3O6.6 superconductor.

This technique is of great significance to the field of high-pressure superconductivity and magnetic materials, according to the researchers.

By demonstrating the use of room-temperature spin-defects in silicon carbide as in-situ high pressure sensors, this work opens the door to new studies of quantum materials using Moissanite anvil cells.

This study was supported by the National Natural Science Foundation of China, the Youth Promotion Association of CAS, and the Innovation Foundation of CAS, among others.



Journal

Nature Materials

DOI

10.1038/s41563-023-01477-5

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide

Article Publication Date

23-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Racial and ethnic diversity in research

Scientific publishers and funding agencies unite in favor of racial and ethnic diversity in research

June 2, 2023
STAR Time Projection CHamber

Subtle signs of fluctuations in critical point search

June 2, 2023

UVA-led discovery challenges 30-year-old dogma in associative polymers research

June 2, 2023

Cancer cells rev up synthesis, compared with neighbors

June 1, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

Carbon-based stimuli-responsive nanomaterials: classification and application

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In