• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers isolate and decode brain signal patterns for specific behaviors

Bioengineer by Bioengineer
November 9, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New machine learning algorithm could discover novel neural patterns and enhance brain-machine interfaces

IMAGE

Credit: Omid Sani & Maryam Shanechi, Shanechi Lab at the USC Viterbi School of Engineering

At any given moment in time, our brain is involved in various activities. For example, when typing on a keyboard, our brain not only dictates our finger movements but also how thirsty we feel at that time. As a result, brain signals contain dynamic neural patterns that reflect a combination of these activities simultaneously. A standing challenge has been isolating those patterns in brain signals that relate to a specific behavior, such as finger movements. Further, developing brain-machine interfaces (BMIs) that help people with neurological and mental disorders requires the translation of brain signals into a specific behavior, a problem called decoding. This decoding also depends on our ability to isolate neural patterns related to specific behaviors. These neural patterns can be masked by patterns related to other activities and can be missed by standard algorithms.

Led by Maryam Shanechi, Assistant Professor and Viterbi Early Career Chair in Electrical and Computer Engineering at the USC Viterbi School of Engineering, researchers have developed a machine learning algorithm that resolved the above challenge. The algorithm published in Nature Neuroscience uncovered neural patterns missed by other methods and enhanced the decoding of behaviors that originated from signals in the brain. This algorithm is a significant advance in modeling and decoding of complex brain activity which could both enable new neuroscience discoveries and enhance future brain-machine interfaces.

Standard algorithms, says Shanechi, can miss some neural patterns related to a given behavior that are masked by patterns related to other functions happening simultaneously. Shanechi and her PhD student Omid Sani developed a machine learning algorithm to resolve this challenge.

Shanechi, the paper’s lead senior author says, “We have developed an algorithm that, for the first time, can dissociate the dynamic patterns in brain signals that relate to specific behaviors one is interested in. Our algorithm was also much better at decoding these behaviors from the brain signals.”

The researchers showed that their machine learning algorithm can find neural patterns that are missed by other methods. This was because unlike prior methods which only consider brain signals when searching for neural patterns, the new algorithm has the ability to consider both brain signals and the behavioral signals such as the speed of arm movements. Doing so, says Sani, the study’s first author, the algorithm discovered the common patterns between the brain and behavioral signals and was also much better able to decode the behavior represented by brain signals. More generally, he adds, the algorithm can model common dynamic patterns between any signals for example, between the signals from different brain regions or signals in other fields beyond neuroscience.

To test the new algorithm, the study’s authors, which include Shanechi’s PhD students Omid Sani and Hamidreza Abbaspourazad, as well as Bijan Pesaran, Professor of Neural Science at NYU and Yan Wong, a former Post-Doc at NYU, relied on four existing datasets collected in the Pesaran Lab. The datasets were based on recorded changes in the neural activity during the performance of different arm and eye movement tasks.

In the future, this new algorithm could be used to develop enhanced brain-machine interfaces that help paralyzed patients by significantly improving the decoding of movement or speech generated by brain signals and thus translating these signals into a specific, desired behavior such as body movements. This could allow a paralyzed patient to move a robotic arm by merely thinking about the movement or generate speech by just thinking about it. In addition, this algorithm could help patients with intractable mental health conditions such as major depression by separating brain signals related to mood symptoms and allowing for real-time tracking of these symptoms (which is outlined in previous studies Shanechi completed). The tracked symptom could then be used as feedback to tailor a therapy to a patient’s needs.

Shanechi adds, “By isolating dynamic neural patterns relevant to different brain functions, this machine learning algorithm can help us investigate basic questions about brain’s functions and develop enhanced brain-machine interfaces to restore lost function in neurological and mental disorders.”

###

Media Contact
Amy Liberson
[email protected]

Tags: Depression/AngerElectrical Engineering/ElectronicsMedicine/HealthMental HealthneurobiologyStress/AnxietyStroke
Share12Tweet8Share2ShareShareShare2

Related Posts

Imaging and Surgery of Retroperitoneal Vascular Leiomyosarcoma

Imaging and Surgery of Retroperitoneal Vascular Leiomyosarcoma

August 3, 2025
blank

Low-Cost Liquid Optical Waveguide Boosts Augmented Reality

August 3, 2025

Predicting Colorectal Cancer Using Lifestyle Factors

August 3, 2025

Optical Matrix Multipliers Revolutionize Image Encoding and Decoding

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    49 shares
    Share 20 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Imaging and Surgery of Retroperitoneal Vascular Leiomyosarcoma

Low-Cost Liquid Optical Waveguide Boosts Augmented Reality

Predicting Colorectal Cancer Using Lifestyle Factors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.