• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, February 5, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers illuminate neurotransmitter transport using X-ray crystallography and molecular simulations

Bioengineer by Bioengineer
December 21, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Depositphotos

Scientists from the MIPT Research Center for Molecular Mechanisms of Aging and Age-Related Diseases have joined forces with their colleagues from Forschungszentrum Jülich, Germany, and uncovered how sodium ions drive glutamate transport in the central nervous system. Glutamate is the most important excitatory neurotransmitter and is actively removed from the synaptic cleft between neurons by specialized transport proteins called excitatory amino acid transporters (EAATs). The findings are reported in Science Advances.

Glutamate transmits activating signals from one neuron to another. To ensure that glutamatergic signaling is precisely terminated, the neurotransmitter is rapidly removed from the synaptic cleft after its release; this is the task of specialized proteins, the EAAT glutamate transporters.

EAATs are secondary active transporters and use concentration gradients of sodium ions to drive glutamate uptake into cells. To this end, the transporters bind the neurotransmitter together with three sodium ions from the external side of the membrane to shuttle their cargo to the cell’s interior. The physiological sodium gradient, with higher ion concentrations on the extracellular than in the intracellular compartment, thus serves as the energy source.

However, it has been unclear how EAATs coordinate the coupled binding of glutamate together with sodium ions and how the ions drive this process. The researchers have now answered this question: High-resolution X-ray crystallography provided incredibly accurate structural snapshots of a sodium-bound glutamate transporter right before the binding of glutamate. Molecular simulations on Jülich supercomputers and functional experiments could then identify how the binding of two sodium ions triggers the binding of glutamate and a third sodium ion (fig. 1).

These results, earlier reported by Forschungszentrum Jülich in a news release, uncover important molecular principles of information processing in the brain and could inform novel therapeutic approaches for ischemic brain diseases such as stroke, where impaired glutamate transport leads to elevated glutamate concentrations. “Our findings provide insights into how neurotransmitter transport works in the mammalian nervous system and what might disrupt this transport, causing problems with memory and learning,” commented Kirill Kovalev of the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases.

###

Original publication:
Na+-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters,

C. Alleva, K. Kovalev, R. Astashkin, M. I. Berndt, C. Baeken, T. Balandin, V. Gordeliy, Ch. Fahlke, J.-P. Machtens, Science Advances 2020; 6 : eaba9854

Link: https://doi.org/10.1126/sciadv.aba9854

Media Contact
Alena Akimova
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aba9854

Tags: AgingMedicine/HealthneurobiologyNeurochemistryStroke
Share12Tweet8Share2ShareShareShare2

Related Posts

Researchers Create Algae-Based Biochar Nanoreactor to Combat Persistent PFAS Pollution

Researchers Create Algae-Based Biochar Nanoreactor to Combat Persistent PFAS Pollution

February 4, 2026
Scientists Confirm Vast Reserves of Freshwater Beneath the Ocean Floor for the First Time

Scientists Confirm Vast Reserves of Freshwater Beneath the Ocean Floor for the First Time

February 4, 2026

Revealing “Hidden” Cellular States: A Novel Physics-Based Method for Label-Free Cancer Cell Phenotyping

February 4, 2026

Rydberg Atomic Medium Enables Optical Readout Below Shot-Noise Limit

February 4, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Low-Temperature Activation Enables Deployment of Smart 4D-Printed Vascular Stents

Fluorescent Paper Test Revolutionizes Blood Typing, Antibody Detection

Sildenafil’s Variable Impact on Preemie Lung Hypertension

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.