• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers identify ultrastable single atom magnet

Bioengineer by Bioengineer
July 7, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: QNS

Researchers at the IBS Center for Quantum Nanoscience at Ewha Womans University (QNS) have shown that dysprosium atoms resting on a thin insulating layer of magnesium oxide have magnetic stability over days. In a study published in Nature Communications they have proven that these tiny magnets have extreme robustness against fluctuations in magnetic field and temperature and will flip only when they are bombarded with high energy electrons through the STM-tip.

Using these ultra-stable and yet switchable single-atom magnets, the team has shown atomic-scale control of the magnetic field within artificially built quantum architectures. “The atomic scale tunability and precision engineering of magnetic fields shown in this work adds a new paradigm for quantum logic devices and quantum computation.” says Dr Aparajita Singha who conducted the research as a post doc at QNS and is now a group leader at the Max Planck Institute for Solid State Research.

Although magnetism arises at the level of single atoms, also called unpaired spins, small atomic clusters are generally magnetically very unstable without careful control of their surroundings. Understanding magnetic properties at such small scales is a fundamental physics problem, which has become technically very important for creating qubits – the building blocks for quantum computation.

Magnetism at such small scales can be studied and controlled using quantum tunneling through sharp electrode probes in a Scanning Tunneling Microscope (STM). The fingerprint of these atomic spins can be measured using single-atom electron spin resonance (ESR). The research team at QNS combined the use these powerful techniques to find the right conditions for achieving the long-sought robust single-atom magnet.

“Creating the smallest ultra-stable magnets was far from a small effort. It needed operating at the limits of measurement techniques and finding just the right conditions. On a double-layer MgO substrate, the Dy atom is almost isolated but still feels enough directionality to maintain a defined polarity over days,” according to Dr. Singha.

To be able to freeze single atoms and measure their miniscule signals, the team created an extreme physical environment, including: (a) temperatures 1000s of times smaller than room temperature, at which atoms stop drifting on surfaces, (b) vacuum stronger than empty space, so that atoms do not get contaminated by impurities which would otherwise bias our results, and (c) ultraclean crystalline surfaces with almost nothing on top other than the desired single atoms. As for the tool itself, they picked up single Fe (iron) atoms one-by-one on the STM-tip until achieving enough signal-to-noise ratio in ESR, even in absence of any external magnetic field (generally 30-50 atoms). Since the electronic states of an ultrastable Dy-atom magnets (4f orbitals) are too shielded for STM measurements, the researchers measured its magnetic field projection on a more easily measurable sensor Fe-atom, placed at defined locations on the same surface. Using the same STM-tip, they also arranged single Dy-atom magnets at different lattice locations of the crystalline substrate around the sensor Fe-atom. Deliberate flipping of the individual Dy-atom magnets changed the magnetic field at the sensor Fe-atom location with precise discreteness, which was then measured to be stable over days using ESR.

Switchable ultrastable single-atom magnets placed at atomically precise locations provide a toolbox for extremely local but precise control of magnetic fields. Once the magnetic state is set, it is maintained automatically without any need of huge and expensive external magnets. Dr. Singha concluded that, “the atomic-scale tunability of magnetic field is a powerful control tool for future surface-based quantum circuits.”

###

Media Contact
Michelle Randall
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-24465-2

Tags: Chemistry/Physics/Materials SciencesMaterialsMolecular PhysicsNanotechnology/Micromachines
Share13Tweet8Share2ShareShareShare2

Related Posts

circMAN1A2-CENPB Interaction Drives Cancer Cell Growth

September 30, 2025

Emerging Review Highlights Rising Heavy Metal Risks in Reservoirs, Advocates for Advanced Monitoring and Eco-Friendly Remediation Strategies

September 30, 2025

Biogas Slurry Enhances Biochar’s Climate Benefits by Transforming Soil Microbial Communities

September 30, 2025

Comparative Validation of Diet History in Eating Disorders

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    59 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

circMAN1A2-CENPB Interaction Drives Cancer Cell Growth

Emerging Review Highlights Rising Heavy Metal Risks in Reservoirs, Advocates for Advanced Monitoring and Eco-Friendly Remediation Strategies

Biogas Slurry Enhances Biochar’s Climate Benefits by Transforming Soil Microbial Communities

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.