• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers identify novel molecular mechanism involved in Alzheimer's

Bioengineer by Bioengineer
February 11, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WINSTON-SALEM, N.C. – Feb. 11, 2019 – Researchers at Wake Forest Baptist Health have identified a novel mechanism and potential new therapeutic target for Alzheimer’s disease (AD).

The findings are published in the current issue of the Journal of Clinical Investigation.

“Alzheimer’s is such a devastating disease and currently there is no cure or effective therapy,” said Tao Ma, Ph.D., assistant professor of gerontology and geriatric medicine at Wake Forest School of Medicine, part of Wake Forest Baptist Health.

“All completed clinical trials of new drugs have failed so there is clearly a need for novel therapeutic targets for potential treatments.”

Alzheimer’s is characterized by profound memory loss and synaptic failure. Although the exact cause of Alzheimer’s remains unclear, it is well established that maintaining memory and synaptic plasticity requires protein synthesis.

Ma’s team and others recently have shown AD-associated activation of a signaling molecule termed eEF2K leads to inhibition of protein synthesis. In this study they wanted to determine if suppression of eEF2K could improve protein synthesis capacity and consequently alleviate the cognitive and synaptic impairments associated with the disease.

The researchers used a genetic approach to repress the activity of eEF2K in two different Alzheimer’s mouse models. They found that genetic suppression of eEF2K prevented memory loss in those animal models and significantly improved synaptic function.

“These findings are encouraging and provide a new pathway for further research,” Ma said.

His team hopes next to test this approach in additional animal studies and eventually in human trials using small molecule inhibitors targeting eEF2K.

###

This work was supported by NIH grants K99/R00 AG044469, R01 AG055581, R01 AG056622, F31AG055264, F31AG054113, P50AG005136, U01AG006781; Alzheimer’s Association grant NIRG-15-362799; BrightFocus Foundation grant A2017457S; Wake Forest Alzheimer’s Disease Core Center pilot grant P30AG049638; Wake Forest Clinical and Translational Science Institute pilot grant, and the Nancy and Buster Alvord Endowment.

Media Contact
Marguerite Beck
[email protected]
336-716-2415

Tags: AgingGerontologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

MINFLUX Reveals Cardiac Ryanodine Receptor Structure in 3D

December 21, 2025

Antisense Therapy Reverses Developmental Defects in SMA Organoids

December 21, 2025

Unraveling Influenza A Host Tropism through Nucleotide Signatures

December 21, 2025

Frailty and Malnutrition Impact Pneumonia Severity in Vaccinated Elderly

December 21, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MINFLUX Reveals Cardiac Ryanodine Receptor Structure in 3D

Antisense Therapy Reverses Developmental Defects in SMA Organoids

Black Soldier Fly Larvae Boost African Catfish Growth

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.