• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers identify link between obesity and sleep loss in worms

Bioengineer by Bioengineer
April 21, 2020
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Energy conservation may be a major function of sleep, according to new study

IMAGE

Credit: University of Nevada, Reno

Can staying up late make you fat? A growing body of research has suggested that poor sleep quality is linked to an increased risk of obesity by deregulating appetite, which in turn leads to more calorie consumption.

But a new study published this week in PLOS Biology found that the direction of this reaction might actually be flipped: It’s not the sleep loss that leads to obesity, but rather that excess weight can cause poor sleep, according to researchers from the University of Pennsylvania’s Perelman School of Medicine and the University of Nevada, Reno, who discovered their findings in the microscopic worm Caenorhabditis elegans (C. elegans).

“We think that sleep is a function of the body trying to conserve energy in a setting where energetic levels are going down. Our findings suggest that if you were to fast for a day, we would predict you might get sleepy because your energetic stores would be depleted,” said study co-author David Raizen, MD, PhD, an associate professor of Neurology and member of the Chronobiology and Sleep Institute at Penn.

Raizen emphasized that while these findings in worms may not translate directly to humans, C. elegans offer a surprisingly good model for studying mammalian slumber. Like all other animals that have nervous systems, they need sleep. But unlike humans, who have complex neural circuitry and are difficult to study, a C. elegans has only 302 neurons — one of which scientists know for certain is a sleep regulator.

In humans, acute sleep disruption can result in increased appetite and insulin resistance, and people who chronically get fewer than six hours of sleep per night are more likely be obese and diabetic. Moreover, starvation in humans, rats, fruit flies, and worms has been shown to affect sleep, indicating that it is regulated, at least in part, by nutrient availability. However, the ways in which sleeping and eating work in tandem has remained unclear.

“We wanted to know, what is sleep actually doing? Short sleep and other chronic conditions, like diabetes, are linked, but it’s just an association. It’s not clear if short sleep is causing the propensity for obesity, or that the obesity, perhaps, causes the propensity for short sleep,” said study co-author Alexander van der Linden, PhD, an associate professor of Biology at the University of Nevada, Reno.

To study the association between metabolism and sleep, the researchers genetically modified C. elegans to “turn off” a neuron that controls sleep. These worms could still eat, breathe, and reproduce, but they lost their ability to sleep. With this neuron turned off, the researchers saw a severe drop in adenosine triphosphate (ATP) levels, which is the body’s energy currency.

“That suggests that sleep is an attempt to conserve energy; it’s not actually causing the loss of energy,” Raizen explained.

In previous research, the van der Linden lab studied a gene in C. elegans called KIN-29. This gene is homologous to the Salt-Inducible Kinase (SIK-3) gene in humans, which was already known to signal sleep pressure. Surprisingly, when the researchers knocked out the KIN-29 gene to create sleepless worms, the mutant C. elegans accumulated excess fat — resembling the human obesity condition — even though their ATP levels lowered.

The researchers hypothesized that the release of fat stores is a mechanism for which sleep is promoted, and that the reason KIN-29 mutants did not sleep is because they were unable to liberate their fat. To test this hypothesis, the researchers again manipulated the KIN-29 mutant worms, this time expressing an enzyme that “freed” their fat. With that manipulation, the worms were again able to sleep.

Raizen said this could explain one reason why people with obesity may experience sleep problems. “There could be a signaling problem between the fat stores and the brain cells that control sleep,” he said.

While there is still much to unravel about sleep, Raizen said that this paper takes the research community one step closer to understanding one of its core functions — and how to treat common sleep disorders.

“There is a common, over-arching sentiment in the sleep field that sleep is all about the brain, or the nerve cells, and our work suggests that this isn’t necessarily true,” he said. “There is some complex interaction between the brain and the rest of the body that connects to sleep regulation.”

###

Additional authors on this paper include Jeremy Grubbs and Lindsey Lopes, who completed this research while students at the University of Nevada, Reno and the Perelman School of Medicine, respectively.

This study was funded by the National Institutes of Health grants R01NS107969 and R01NS088432, COBRE P20GM103650, and the National Science Foundation grant IOS1353014.

Media Contact
Lauren Ingeno
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.pbio.3000220

Tags: BiologyDiabetesDiet/Body WeightEating Disorders/ObesityGeneticsMedicine/HealthMetabolism/Metabolic DiseasesNutrition/Nutrients
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Two-Step Lewy Body Detection via Smell and CSF

August 5, 2025
blank

CT Scans: Raised Arms Improve Clavicle Age Estimates

August 5, 2025

Two Decades of Flow Cytometry Advancements

August 5, 2025

How Parent-Child Bonding Affects Teens’ Social Media Addiction

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tunable Metafibers Enable Remote 3D Focus Control

Two-Step Lewy Body Detection via Smell and CSF

Bacterial Diversity Across Developmental Stages of Anopheles subpictus

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.