• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers identify earliest known protein needed for cell division

Bioengineer by Bioengineer
January 30, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of Kenji Sugioka

EUGENE, Ore. — Jan. 30, 2017 — Researchers from three U.S. universities have identified, using roundworms, the earliest-acting protein known to duplicate the centriole, a tiny cylinder-shaped structure that is a key component of the machinery that organizes cell division in animals.

When the protein is damaged, cell division goes awry in ways that mirror conditions associated with human cancers, microcephaly and ciliopathies such as Bardet-Biedl and oral-facial-digital syndromes that involve myriad abnormalities throughout the body.

The discovery of the protein in C-elegans, a tiny nematode, is detailed in a paper published in January by the journal eLife. The mutant protein, dubbed sas-7, was found 17 years ago in the lab of co-author Bruce Bowerman, who now heads of the Department of Biology at the University of Oregon.

Using high-resolution transmission electron microscopy in collaboration with James Priess at the Fred Hutchinson Cancer Research Center in Seattle, the researchers were able to circle back to study centrioles at an ultrastructural level. The analysis identified a centriolar structure dependent on the protein — called a paddlewheel for its shape — that is vital for proper cell division in the worms. Similar structures have been observed in other animals but their functional importance was not known.

"The bottom line is that we've discovered a protein that acts at the earliest step known in centriole duplication," said Bowerman, a member and former head of the UO Institute of Molecular Biology. "Finding this protein provides a key advance in our understanding centriole duplication, which is critical to cell division and cilia function in animals. We also have attained new structural insights into the molecular organization of these fascinating structures."

The research focused on mitosis, the process by which a single cell divides to make two daughter cells. Each daughter cell inherits identical copies of the organism's genetic code — its biological instruction manual.

Vital to cell division is the presence of two pairs of centrioles, located near the nucleus of each cell, that organize rigid fibers called microtubules into a bipolar structure. This bipolar structure, called the mitotic spindle, separates duplicated chromosomes such that each daughter receives one copy of each chromosome.

Just as the DNA in chromosomes must be duplicated before cell division, so are the centrioles, which are complex assemblies of many different proteins. While chromosome duplication is well understood, centriole duplication remains mysterious.

When sas-7 is damaged, centriole duplication fails and a cell has only one centriole. As a result, a monopolar spindle forms and chromosomes are not separated into daughter cells. In addition, the structural integrity of the centriole's paddlewheel is compromised. "We think this paddlewheel is an important structural component of centrioles and may be a key part of how centrioles duplicate," Bowerman said.

Co-lead author Danielle R. Hamill, now a professor of zoology at Ohio Wesleyan University, had found the mutant protein while she was a postdoctoral researcher at the UO. Over the years, she returned to the UO to work with Bowerman to keep probing the role of sas-7.

"There have been previously identified proteins, including some with similar names, sas-1 through 6, all of which were identified more than 20 years ago. All have since been found to be conserved in humans," Bowerman said.

Previously, one of those proteins discovered earlier, spd-2, had been identified as the earliest-acting protein in mitotic cell division. Bowerman's team, co-led by current UO postdoctoral researcher Kenji Sugioka, determined that sas-7 is active upstream from spd-2.

"C-elegans has been the one model organism where the pathway of centriole duplication has been worked out and found to be conserved in all animals," Bowerman said. "We don't know how sas-7 is doing its job, but it does provide us with a new player in this pathway and may help us understand how cells know how to divide into two over and over, and accurately."

###

Co-authors on the paper with Bowerman, Hamill, Priess and Sugioka were Joshua B. Lowery, a former doctoral student in the UO's Institute of Molecular Biology, and Marie E. McNeely, Molly Enrick, Alyssa C. Richter and Lauren E. Kiebler, former and current students of Hamill's at Ohio Wesleyan.

Separate National Institutes of Health grants to Hamill, Bowerman and Priess primarily funded the work. Sugioka was supported by a Human Frontier Science Program grant from the France-based International Human Frontier Science Program Organization and a Journal of Cell Science travel fellowship.

Source: Bruce Bowerman, professor and head, Department of Biology, 541-346-0853, [email protected], and Danielle Hamill, Department of Zoology, Ohio Wesleyan University, 740-368-3888, [email protected]

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.

Links:

About Bowerman: http://molbio.uoregon.edu/bowerman/
Institute of Molecular Biology: http://molbio.uoregon.edu/
Department of Biology: http://biology.uoregon.edu/
Bowerman lab: http://www.molbio.uoregon.edu/~bowermanlab/

Media Contact

Jim Barlow
[email protected]
541-346-3481
@UOregonNews

http://around.uoregon.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

October 5, 2025

Psychological Resilience Mediates Care in Nursing Interns

October 5, 2025

MeaB bZIP Factor Essential for Nitrosative Stress Response

October 5, 2025

Revolutionizing Preterm Infant Care in Resource-Limited Settings

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

Psychological Resilience Mediates Care in Nursing Interns

MeaB bZIP Factor Essential for Nitrosative Stress Response

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.