• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers identify a new entryway into cells for virus causing COVID-19

Bioengineer by Bioengineer
December 6, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

One of the many pressing research undertakings by the scientific community amid the ongoing COVID-19 pandemic has focused on ways the coronavirus manages to enter host cells.

Researchers identify a new entryway into cells for virus causing COVID-19

Credit: University of Ottawa

One of the many pressing research undertakings by the scientific community amid the ongoing COVID-19 pandemic has focused on ways the coronavirus manages to enter host cells.

Now, in a study adding to the pool of knowledge about viral entry, Dr. Marceline Côté’s Faculty of Medicine lab and collaborators have published a highly compelling study showing a previously unrecognized entryway for SARS-CoV-2, the virus that causes COVID-19 and the driver of the global health crisis that’s transformed the world.

Previous studies have shown that SARS-CoV-2 as well as an earlier coronavirus, SARS-CoV-1, the virus behind the SARS outbreak in 2003, enter cells via two distinct pathways. The new research led by Dr. Côté’s lab shows a third entry route.

This viral entryway involves metalloproteinases, enzymes in the body with a catalytic mechanism that requires a metal, such as zinc atoms, to function.

Over a series of experiments starting in 2020, Dr. Côté’s research team discovered that SARS-COV-2 can enter cells in a metalloproteinase-dependent manner. The team describes a role for two matrix metalloproteinases—MMP-2 and MMP-9—in the activation of the spike glycoprotein.

What are the ramifications of this kind of viral entry?  The study published in a recent issue of iScience, an open access journal from Cell Press, suggests that variants that gravitate toward metalloproteinases may cause more havoc.

The team’s experiments showed that some variants clearly prefer the metalloproteinases for activation. For instance, the Delta variant, a more pathogenic variant that surged in 2021, commonly used metalloproteinases for entry. Its less pathogenic successor, Omicron, did not.

“SARS-CoV-2 may be able to use proteins, which are typically secreted by some activated immune cells, to cause more damage and potentially infect a wider range of cells and tissues,” says Dr. Côté, a Faculty associate professor who is the holder of the Canada Research Chair in Molecular Virology and Antiviral Therapeutics.

The entry mechanism could also play a role in disease progression.

Dr. Côté says the findings could have implications in the progression to severe illness and some post COVID-19 conditions, such as the complex array of post-infection symptoms known as “long Covid.”

The study’s co-first authors are Mehdi Benlarbi, an undergraduate honours’ thesis student in Dr. Cote’s lab and recipient of a uOttawa Centre for Infection, Immunity and Inflammation scholarship, and Dr. Geneviève Laroche of uOttawa. Collaborators include researchers at the University of Western Ontario, Centre de recherche du CHUM, and Sunnybrook Research Institute. Funding was provided by the Canadian Institutes of Health Research (CIHR).



Journal

iScience

DOI

10.1016/j.isci.2022.105316

Method of Research

Randomized controlled/clinical trial

Subject of Research

Cells

Article Title

Identification and differential usage of a host metalloproteinase entry pathway by SARS-CoV-2 Delta and Omicron

Article Publication Date

18-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

A clump of sea campions next to some thrift or sea pinks.

Ancestral variation guides future environmental adaptations

January 27, 2023
Motile Sperm and Frequent Abortions in Spreading Earthmoss

Motile sperm and frequent abortions in spreading earthmoss

January 27, 2023

A transnational collaboration leads to the characterization of an emergent plant virus

January 26, 2023

Study shows that bioprinted artificial skin can be used in cosmetics and drugs testing

January 26, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

A fairy-like robot flies by the power of wind and light

UK’s Overseas Territories at ongoing risk from wide range of invasive species

World-first guidelines created to help prevent heart complications in children during cancer treatment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In