• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers grow cells in ‘paper organs’

Bioengineer by Bioengineer
May 1, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Long before scientists test new medicines in animals or people, they study the effects of the substances on cells growing in Petri dishes. However, a 2D layer of cells is a poor substitute for the much more complex 3D structure of tissues in organs. Now, researchers reporting in the ACS journal Nano Letters have used a 3D printer to make paper organs, complete with artificial blood vessels, that they can populate with cells.

In the body, tissues with similar functions are grouped together in organs, such as the brain, heart or stomach. Organs also contain supporting cells, including nerves, blood vessels and connective tissues. An organ’s 3D architecture provides biological, structural and mechanical support to cells that influences how they grow and respond to external stimuli, such as medicines. Yu Shrike Zhang and colleagues wanted to see whether they could combine 3D printing and bacterial cellulose to make supports for artificial organs that they could then fill with cells. Cellulose, a polysaccharide made by plants, algae and some bacteria, is a low-cost material used to make paper.

To create a breast tumor model, the researchers 3D printed petroleum jelly-paraffin ink into a bacterial cellulose hydrogel. Then, they air-dried the hydrogel so that it became porous and paper-like. When they heated the ink, it liquefied and was easy to remove, leaving behind hollow microchannels. The team wet the paper “organ” and added endothelial cells — the cell type that lines blood vessels — to the microchannels, and added breast cancer cells to the rest of the structure. Dried paper organs can be stored for long periods of time and then rehydrated to produce inexpensive tissue models, which could be useful for drug screening and personalized medicine, the researchers say.

###

The authors acknowledge funding from the National Institutes of Health, the New England Anti-Vivisection Society and the National Natural Science Foundation of China.

The abstract that accompanies this study is available here.

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook 

Media Contact
Katie Cottingham
[email protected]

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyCell BiologyChemistry/Physics/Materials SciencesInternal MedicineMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

AUX/LAX Transporters: Structure and Auxin Import Mechanism

AUX/LAX Transporters: Structure and Auxin Import Mechanism

August 4, 2025
blank

CK2–PRC2 Signal Drives Plant Cold Memory Epigenetics

August 2, 2025

AI-Driven Protein Design Advances T-Cell Immunotherapy Breakthroughs

August 1, 2025

Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    62 shares
    Share 25 Tweet 16
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    45 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sampling and Distribution of Riverbank Plastics Explained

Smoking’s Impact on Breast Cancer Screening

Lactate Drives Immune Hotspots; SLC5A12 Inhibition Resolves

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.