• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Researchers from CSI Singapore discover new way to inhibit development of lung cancer

Bioengineer by Bioengineer
August 5, 2016
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Researchers from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS), in collaboration with Harvard Stem Cell Institute (HSCI), have discovered a new way in which the development of lung cancer can be stopped. In a study published in the journal Science Translational Medicine in August 2016, the researchers found that inhibiting a protein called BMI1 was able to impair tumour growth in lung cancer. The study was led by Professor Daniel Tenen, Director of CSI Singapore and his associate at HSCI, Dr Elena Levantini, and included Dr Kol Jia Yong, a former CSI Singapore graduate student of Prof Tenen. Dr Yong is one of the co-first authors of the study.

Lung cancer is one of the deadliest cancers in the world, accounting for 30 per cent of tumour-related deaths. Like many solid tumours, lung cancer is very heterogeneous (consisting of cancer cells which behave and respond differently) and hence there is currently no single efficient drug which is able to treat all patients.

Prof Tenen has worked on the differentiation factor C/EBPa for several decades, demonstrating that it is an important tumour suppressor, first in acute myelogenous leukemia, and subsequently, in studies in collaboration with Dr Levantini, in lung cancer. In addition, loss of C/EBPa has also been found to have a role in the development of other cancer types such as hepatic, squamous cell, and prostate cancer. Despite this, the ways in which C/EBPa suppresses tumour formation still remains unknown.

In the past few years, Dr Levantini continued the investigation of C/EBPa in lung cancer. She confirmed that one subtype of lung cancer called non-small cell lung cancer (NSCLC) frequently expressed low levels of C/EBPa. Low or absent C/EBPa resulted in poorer survival when they corresponded with a reciprocally high expression of BMI1, a gene implicated in the development of tumours of colon, breast, and stomach, as well as some forms of leukemia. Dr Levantini then went on to conduct a pre-clinical study in which deleting C/EBPa resulted in NSCLC. Analysis of this study led to the discovery that C/EBPa suppressed lung tumour formation by inhibiting the expression of BMI1. Dr Levantini then demonstrated that reducing the levels of BMI1 by genetic means, or by using a drug reducing expression of BMI1, led to inhibition of tumour formation.

“This study has established an important link between C/EBPa and BMI1 for the first time. Furthermore, these findings suggest that assessment of expression levels of these proteins could be used as a way to predict which patients might benefit from drugs which inhibit BMI1, some of which are currently being evaluated in clinical trials,” said Prof Tenen.

Moving forward, knowing the substantial role that BMI1 plays in the formation and development of aggressive lung cancer types, the findings of this study will contribute to the development of better therapies for cancer patients.

###

Media Contact

Goh Yu Chong
[email protected]
65-660-11653
@NUSingapore

http://www.nus.edu.sg/

The post Researchers from CSI Singapore discover new way to inhibit development of lung cancer appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

Methionine Gamma-Lyase: Purification and Anticancer Insights

Methionine Gamma-Lyase: Purification and Anticancer Insights

August 20, 2025
blank

Catheryn Yashar Appointed President-Elect of the National Society

August 19, 2025

Impaired Blood Flow Accelerates Tumor Growth by Aging the Immune System

August 19, 2025

Hybrid AI approach enhances accuracy of mammogram interpretation

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Parkinson’s Treatment with PLGA Carriers

Scientists Amazed by Enormous Bubble Surrounding Supergiant Star

Early Teen Sleep Issues Linked to Increased Risk of Future Self-Harm

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.