• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 11, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers first synthesize conjoined bismacrocycle with all phenylene units

Bioengineer by Bioengineer
May 24, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ZHANG Xinyu et al.

The research team led by Prof. DU Pingwu from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) first successfully synthesized an all-phenylene bismacrocycle (bis- means two) with Siamese-twin structure and used fullerene as guest molecules to assemble a peanut-shaped supramolecular complex. This study was published in Angewandte Chemie.

As a new type of carbon material, carbon nanotubes (CNTs) have attracted widespread attention because of their outstanding mechanical and photophysical properties. However, the synthesis of CNTs or CNTs fragments with selective simple structure is still a challenge.

This study reported a conjugated highly strained all-phenylene Siamese-twin bismacrocycle, SCPP[10]. Two phenylene nanorings, [10]CPP, conjoined by a twisted central benzene, showing a unique 3D structure similar to the number 8.

The desired structure is realized through precise select of appropriate building units. Scanning tunneling microscopy (STM) imaging further characterized this conjugated molecule with Siamese-twin shaped structure at the atomic scale.

Researchers applied UV-vis absorption, fluorescence, and theoretical calculations to characterize physical properties of SCPP[10]. Results show that there existed significant redshift of the UV-vis spectrum and fluorescence when compared with the ring component [10]CPP, indicating distinctive nonplanar extended π-conjugated enhancement. Correspondingly, the emission colors of SCPP[10] and [10]CPP were yellow and blue under a hand-held UV lamp.

Besides, the strain energy and largest interphenylene torsion angle of this bismacrocycle were up to 110.59 kcal/mol and 46.07° respectively. Its central benzene had a twisted angle of 10.05°. These novel physical characterizations above were all attributed to the special structure of SCPP[10].

Furthermore, SCPP[10] became a proper supramolecular host due to its curved bismacrocyclic space and suitable diameter. A peanut-shaped 1:2 host-guest complex could be formed after SCPP[10], the peanut shell, capturing two PCBM (fullerene derivatives) molecules as seeds. The binding constants K were also calculated according to the UV-vis titration, and the ratio 1:2 was proved by a Job plot.

With unique photophysical properties and topology structure, SCPP[10] has been rising as a promising carbon-rich molecule in the photoelectric and supramolecular material field.

###

Media Contact
Jane FAN Qiong
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/anie.202104669

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Trypanosoma cruzi’s Genome Unveils 32 Chromosomes, 3 Compartments

Trypanosoma cruzi’s Genome Unveils 32 Chromosomes, 3 Compartments

January 11, 2026
Unlocking Sperm Motility: Insights from Chicken Genetics

Unlocking Sperm Motility: Insights from Chicken Genetics

January 11, 2026

Exploring Heterosis in Abaca BC2 Hybrid Dioscoro 1

January 10, 2026

OFP Gene Family in Soybean: Height and Salinity Insights

January 10, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    145 shares
    Share 58 Tweet 36
  • Robotic Ureteral Reconstruction: A Novel Approach

    49 shares
    Share 20 Tweet 12
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Detecting Mental Stress in Housewives Using Wearable Tech

Trypanosoma cruzi’s Genome Unveils 32 Chromosomes, 3 Compartments

Revolutionizing Multilayer Plastic Recycling via Microfibrillation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.