• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Researchers find where visual memories are made

Bioengineer by Bioengineer
January 21, 2015
in Neuroscience
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In findings that may lead to new treatments for cognitive disorders, researchers at MIT’s Picower Institute for Learning and Memory zero in on how the brain forms memories of what has been seen.

visual memories

A small region of the brain called the primary visual cortex can be targeted using a virus (light green) to block habituation learning. Photo Credit: Eitan S. Kaplan and Sam F. Cooke/Bear Lab

In a paper appearing this week in the online edition of Nature Neuroscience, a research team led by Mark Bear, the Picower Professor of Neuroscience, showed that dramatic changes occur in the primary visual cortex when mice learn to distinguish novel from familiar visual stimuli. Manipulations that prevented the changes in visual cortex also blocked memory formation.

Impairments in detecting and recognizing familiar visual elements and patterns are features of a number of neuropsychiatric disorders, including autism and schizophrenia. With these new findings, “we now have an opportunity to investigate how gene mutations that cause or increase the risk for these disorders disrupt the mechanisms of visual recognition memory,” says Bear, a Howard Hughes Medical Institute investigator. “We anticipate that this knowledge will suggest entirely novel approaches to treating these diseases.”

To understand the physical basis of memory, researchers seek to identify where and how the brain changes as learning occurs — something that has been very difficult to achieve.

The study’s lead author, Picower Institute research scientist Samuel F. Cooke, working with postdoctoral fellows Robert W. Komorowski and Jeffrey Gavornik and graduate student Eitan S. Kaplan, showed that mice move to investigate a visual stimulus that has never before been experienced, but stop moving when the same stimulus becomes familiar. They discovered that as familiarity was learned, synaptic transmission was changed in the primary visual cortex. Preventing or reversing this synaptic plasticity in visual cortex left the animals unable to distinguish familiar and novel visual stimuli.

Previously, the primary visual cortex was seen as a “first responder” to visual stimuli that quickly passes information along to higher-order brain regions for interpretation and memory storage. “The study points to the visual cortex as a tool of learning and memory in its own right, capable of storing simple but fundamentally important memories,” Cooke says. “Our work provides great hope for the future as it suggests we may have the chance to directly observe neurons undergo lasting changes as a very simple and experimentally constrained memory is formed.”

Bear anticipates that the results will surprise neuroscientists. “We find that, contrary to the dogma that the primary visual cortex is relatively immutable in adults, a form of visual experience induces synaptic modifications in this area, and these modifications are necessary for a type of visual recognition memory.”

Story Source:

The above story is based on materials provided by MIT News Office, Picower Institute for Learning and Memory.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    71 shares
    Share 28 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diastereodivergent Routes to Multi-Substituted Cycloalkanes

Spatial Metabolomics Reveals Lasting Stroke Brain Changes

Rethinking Resilience in Post-Nuclear Food Trade Recovery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.