• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, June 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Stem Cells

Researchers find stem cells remember prior substrates

Bioengineer by Bioengineer
March 17, 2014
in Stem Cells
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of researchers working at the University of Colorado has found that human stem cells appear to remember the physical nature of the structure they were grown on, after being moved to a different substrate. In their paper published in the journal Nature Materials, the researchers describe how they grew human stem cells on different substrates. In so doing, they discovered that the stem cells continued to express certain proteins related to a substrate even after its hardness was changed.

stem cells

Scientists have known for some time that stem cells respond to their environment as they grow—those grown on hard material, such as glass or metal for example, are more amenable to growing into bone cells. In this new effort, the researchers sought to discover if changes to a stem cell brought about by environment are retained if the stem cell is moved to a different environment.

To find out, the researchers used mesenchymal cells which are known to be able to grow into almost any human body part. They placed the stem cells on a stiff substrate then moved them to one less stiff over differing numbers of days. In so doing, they found that the longer the cells were left on the stiff substrate the more a protein connected to bone growth (RUNX2) was expressed. Conversely, cells that were first placed on a soft surface and subsequently moved to a hard surface demonstrated a tendency to develop either bone or adipogenic tendencies.

In another experiment, the researchers applied the stem cells to a substrate coated with a phototunable hydrogel—it grows softer when exposed to light—using it allowed for changing the stiffness of the substrate without having to move the cells. Using this approach the team found that if the cells were allowed to grow on the gel in its stiff state, for just one day, switching to a soft state caused the expression of RUNX2 to cease immediately. When they allowed the cells to grow for ten days on the stiff base, however, before switching to a soft one, expression of RUNX2 continued for another ten days before finally ceasing. This shows, the researchers contend, that stem cells have a memory component that is not yet understood.

The researchers note that their findings could be applied to other stem cell research areas such as cases where unintentional consequences may be arising in experiments due to the stiffness of the substrate in which they are being grown. It also raises the question of whether other environmental factors might be impacting cell growth and if so, if they have a memory component as well.

Story Source:

The above story is based on materials provided by Phys.

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Human stem cells treat spinal cord injury side effects in mice

October 4, 2016
blank

Research into fly development provides insights into blood vessel formation

September 30, 2016

Fertility genes required for sperm stem cells

September 28, 2016

Regulatory RNA essential to DNA damage response

September 27, 2016
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

Carbon-based stimuli-responsive nanomaterials: classification and application

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In