• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers find several oceanic bottom circulation collapses in the past 4.7 million years

Bioengineer by Bioengineer
February 24, 2023
in Chemistry
Reading Time: 3 mins read
0
A photo taken by an underwater camera showing the distribution of the nodules on the seafloor at the study site
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Antarctic bottom water (AABW) covers more than two-thirds of the global ocean bottom, and its formation has recently decreased. However, its long-term variability has not been well understood.

A photo taken by an underwater camera showing the distribution of the nodules on the seafloor at the study site

Credit: YAO Huiqiang

Antarctic bottom water (AABW) covers more than two-thirds of the global ocean bottom, and its formation has recently decreased. However, its long-term variability has not been well understood.

Researchers led by Prof. DENG Chenglong from the Institute of Geology and Geophysics (IGG) of the Chinese Academy of Sciences (CAS) and their collaborators have reconstructed AABW history back to approximately 4.7 million years ago (mya). They found that AABW has collapsed several times and such collapses might have induced moisture transport to fuel the Northern Hemisphere glaciation (NHG).

This work was published in Science Advances on Feb. 24.

The study was based on a 36-mm-diameter Fe-Mn nodule from the Eastern Pacific, located 5,050 m below sea level. The nodule was collected by Guangzhou Marine Geological Survey, China Geological Survey.

Magnetic scanning was an important factor in providing precise dating results. “This is a key, though the final dating was obtained by an integration with 10Be/9Be, flux of metal Co, and astronomical tuning,” said Dr. YI Liang from Tongji University, first author of the study and a postdoc at IGG/CAS.

“Since AABW is the main provider of oxygen in the ocean bottom region, we used various scientific methods to identify the relation between metal accumulation in the Fe-Mn nodule and oceanic redox conditions,” said Prof. DENG. “Ni, Mn, and Cu contents are used to indicate AABW changes.”

These results show that seawater oxygen has experienced a linear increase in the Eastern Pacific since around 3.4 mya. This trend agrees with the observation of the Antarctic Ice Sheet (AIS), suggesting a covariation between them.

Comparing the AABW record with other geological records from the past million years, the researchers found a glacial enhancement of oceanic bottom circulation. This observation implies that atmospheric CO2 may have been regularly stored in the deep ocean when Earth’s climate was cold, e.g., during past glacial periods.

The comparisons clearly highlighted seven intervals of poor seawater oxygen, suggesting AABW influence was reduced to a much lower level. These periods are known as AABW collapse and accompanied an enhancement of North Atlantic Deepwater (NADW) as well as key stages of NHG history, such as when NHG became intensified or amplified.

Although we don’t know what will happen in response to ongoing AIS melting and AABW slowing, AABW collapse might have pulled the Earth into a harsher glacial climate several times in the past.



Journal

Science Advances

DOI

10.1126/sciadv.add1467

Article Title

Plio-Pleistocene deep-sea ventilation in the eastern Pacific and potential linkages with Northern Hemisphere glaciation

Article Publication Date

24-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Biologic Treatments: Adherence Insights for Palmoplantar Pustulosis

Nurses’ Emotional Challenges in Surgical Patient Care

Surviving Post-NICU: Caring for Complex Infants

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.