• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, November 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers find genetic cause of Raynaud’s phenomenon

Bioengineer by Bioengineer
October 12, 2023
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Queen Mary University of London’s Precision Healthcare University Research Institute (PHURI) and the Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin have identified the genetic causes of Raynaud’s phenomenon. Their findings, published today (12 October) in Nature Communications, could lead to the first effective treatments for people with Raynaud’s.

Accompanying graphic - ADRA2A and IRX1 are putative risk genes for Raynaud’s phenomenon

Credit: Maik Pietzner, Computational Medicine, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin,
Germany and Precision Healthcare University Research Institute, Queen Mary University of London, London, UK

Researchers at Queen Mary University of London’s Precision Healthcare University Research Institute (PHURI) and the Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin have identified the genetic causes of Raynaud’s phenomenon. Their findings, published today (12 October) in Nature Communications, could lead to the first effective treatments for people with Raynaud’s.

Raynaud’s phenomenon (RP) is a heritable condition that affects blood circulation. It’s a vasospastic condition, which means that small blood vessels near the surface of the skin have spasms that can limit blood flow. People with Raynaud’s often experience pain in their fingers and toes, often alongside changes of colour in their skin, due a lack of blood flow during attacks when they’re cold or emotionally stressed. In more serious cases, it can cause severe pain or ulcers.

Around 2-5% of the population are affected by Raynaud’s. Despite it being a common condition, it’s under-investigated and little is understood about the genetic cause of the condition.

There are limited treatments available for RP. Doctors usually advise that the patient use ‘self-management’ strategies such as keeping warm and avoiding triggers of attacks. In severe cases medications can be prescribed, these are ‘repurposed drugs’ usually medicines to lower high blood pressure. These often cause severe side effects in patients. A better understanding of the underlying genetic mechanisms that cause RD is needed to develop safe and effective treatments.

Researchers led by Professor Claudia Langenberg and Professor Maik Pietzner, working across PHURI and the BIH, carried out the largest genetic study of Raynaud’s phenomenon. The team used electronic health records from the UK Biobank, a large-scale biomedical database and research resource containing genetic and health information from half a million UK participants, to identify more than 5,000 people affected by Raynaud’s. The team also used electronic health records from Queen Mary’s Genes & Health study.

The findings

The researchers discovered variation in two genes that predisposed participants to Raynaud’s phenomenon: One was the alpha-2A-adrenergic receptor for adrenaline, ADRA2A, a classic stress receptor that causes the small blood vessels to contract.

“This makes sense when it’s cold or dangerous, because the body has to supply the inside of the body with blood,” explains Maik Pietzner, Professor of Health Data Modelling at PHURI and group leader at BIH.

“In Raynaud’s patients, this receptor seemed to be particularly active, which could explain the vasospasms, especially in combination with the second gene that we found: This gene is the transcription factor IRX1, which may regulate the ability of blood vessels to dilate.

“If its production is increased, it may activate genes that prevent constricted vessels from relaxing as they would normally do. Together with the overactive adrenaline receptor, this may then lead to the vessels not suppling enough blood for a longer period of time, which leads to the observed white fingers and toes.”

The researchers replicated some of their findings using data from participants of British Bangladeshi and Pakistani origin from Queen Mary’s Genes & Health study.

The researchers’ findings help to understand, for the first time, why the small vessels react so strongly in patients, even apparently without external stimuli, such as exposure to cold.

Dr Emma Blamont, Head of Research for Scleroderma and Raynaud’s UK (SRUK), said: 

“Raynaud’s is a painful, chronic condition that affects around one in six people in the UK. We know that attacks can be brought on by certain triggers like cold and stress, but relatively little is known about why some people experience Raynaud’s and others don’t. For the millions of people living with this condition, simple everyday tasks can be a challenge, so research like this, which significantly advances our understanding of Raynaud’s and the role that genetics may play in causing it, is crucial.

“The next step is to confirm these important findings in more diverse population groups and validate the results through functional studies. If successful, these findings could help us unlock more new therapeutic avenues for Raynaud’s leading to better, more targeted and kinder treatments.”

The findings could lead to recommendations for patients to help manage the condition or its symptoms. For example, the researchers showed that people with a genetic predisposition to low blood sugar levels have an increased risk of Raynaud’s phenomenon, suggesting that patients should possibly avoid longer episodes of low blood sugar.

For Claudia Langenberg, Director of PHURI and Professor of Computational Medicine at BIH, this study exemplifies that integrating genomic and electronic health record data can rapidly help to better understand diseases whose aetiology remains unknown. She said:

“Of course, we ultimately hope that our findings will point to novel treatment options. Approved drugs that more or less specifically inhibit the function of ADRA2A, such as the antidepressant mirtazapine, already exist, and our results suggest that these may present alternative treatment options for patients suffering from the symptoms of Raynaud’s.”



Journal

Nature Communications

DOI

10.1038/s41467-023-41876

Method of Research

Data/statistical analysis

Subject of Research

People

Article Title

ADRA2A and IRX1 are putative risk genes for Raynaud’s phenomenon

Article Publication Date

12-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Figure 1

Understanding rapid tendon regeneration in newts may one day help human athletes

November 29, 2023
Study finds threats increased during pandemic

Threats against public health workers doubled during the COVID-19 pandemic

November 28, 2023

UTHealth Houston School of Dentistry researcher awarded $2 million grant by NIH to study pharmacotoxicity of areca nut

November 28, 2023

RCSI researchers develop material that reduces bacterial infection and speeds up bone healing

November 28, 2023

POPULAR NEWS

  • News Package

    Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • UMass Amherst receives $2.5 million from Howard Hughes Medical Institute to reshape STEM education

    34 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9
  • The case for engineering our food

    86 shares
    Share 34 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI model predicts breast cancer risk without racial bias

Understanding rapid tendon regeneration in newts may one day help human athletes

Project will look for rare-earth elements in Southeast Alaska seaweed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In