• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers find gender separation affects sense of smell

Bioengineer by Bioengineer
December 18, 2018
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A University of Wyoming researcher and his team have discovered that separating male and female mice, over time, changes the way they smell.

The study investigates how the olfactory sensory receptors in mice change as a function of exposure to odors emitted from members of the opposite sex, says Stephen Santoro, an assistant professor in the Department of Zoology and Physiology.

“The idea is that our experiences change our sensory system in a way that is semipermanent. This is probably true in humans as much as mice,” Santoro says. “We found that mice that are housed with the opposite sex all of the time have olfactory sensory receptors that are similar in composition because they are smelling similar smells. On the other hand, mice that were housed separately by sex have sex-specific differences in their olfactory receptors. As a result, they may perceive odors differently.”

The new study, titled “Sex Separation Induces Differences in the Olfactory Sensory Receptor Repertoires of Male and Female Mice,” was published Dec. 4 in Nature Communications, an open access journal that publishes high-quality research from all areas of the natural sciences. Papers published by the journal represent important advances of significance to specialists within each field.

Carl van der Linden, a graduate student from Santa Ynez, Calif., in the UW Neuroscience Program, was the paper’s lead author. Pooja Gupta, a postdoctoral researcher in the Department of Zoology and Physiology and who works in Santoro’s lab, was a contributing author. Susanne Jakob, a preceptor in the Department of Stem Cell and Regenerative Biology at Harvard University; and Catherine Dulac, the Higgins Professor of Molecular and Cellular Biology and department chair at Harvard University, and a scientist at the Howard Hughes Medical Institute, were contributing authors.

Santoro is the paper’s corresponding author. He began this research as a postdoctoral researcher in Dulac’s lab at Harvard before bringing his work to UW.

“The olfactory system of mice and humans is very similar,” Santoro says. “Mice are a very good model to understand how neural systems work, in general. They are a much better model for humans than flies and other common-model organisms.”

Sensory activity plays pivotal roles in the development of the nervous system. Mouse odors are a complex mixture of volatile and non-volatile chemicals derived from skin secretions, urine, tears, saliva and feces, which are known to differ substantially in their chemical compositions between males and females.

“Human males and females smell different, too. Men give off odors from testosterone metabolites, for example,” Santoro explains. “There are genetic differences in being able to detect this. Some people would say the smell is good, while others find it unpleasant or cannot detect it at all. These differences in perception are related to genetic differences in people’s receptors. Some researchers speculate that these kinds of molecules might function as pheromones in humans.”

Unlike most neurons in the mammalian nervous system, olfactory sensory neurons (OSNs) are continually born and replaced throughout life, a process that normally replaces damaged neurons in humans when we have a cold or use a zinc nasal spray, Santoro says. Changes in the abundance of specific OSN subtypes occur, in part, through a use-it-or-lose-it mechanism in which active OSNs are retained and silent OSNs are eliminated from the population, the paper concludes.

###

The research was funded by the National Institutes of Health (NIH), including through a grant to the Wyoming Sensory Biology Center of Biomedical Research Excellence, and by the Howard Hughes Medical Institute in Chevy Chase, Md. Results from this study may contribute to an enhanced understanding of sex-specific differences in olfactory function.

“As we age, our olfactory system gets worse. One of NIH’s priorities is to understand why that occurs,” Santoro says. “We think our research may have some relevance to this by providing insights into why olfactory neurons die and how the birth of new neurons is regulated.”

Media Contact
Stephen Santoro
[email protected]
307-314-2444

Related Journal Article

http://www.uwyo.edu/uw/news/2018/12/uw-professor-leads-research-team-on-olfactory-sensory-receptors-in-mice.html
http://dx.doi.org/10.1038/s41467-018-07120-1

Tags: BiologyDevelopmental/Reproductive BiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.