• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, December 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers explore the epigenetics of daytime sleepiness

Bioengineer by Bioengineer
May 29, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Multi-ethnic study reveals DNA methylation sites specific to African Americans

Boston, MA — Everyone feels tired at times, but up to 20 percent of U.S. adults report feeling so sleepy during the day that it interferes with daily activities, including working, having meals or carrying on conversations. Excessive daytime sleepiness (EDS) can lead to car accidents and work-related injuries and may increase risk of stroke and heart disease. Rates of EDS vary by race/ethnicity, but the basis for these differences is not well understood. A new, multi-ethnic study led by investigators from Brigham and Women’s Hospital explores associations between daytime sleepiness and epigenetic modifications — measurable, chemical changes that may be influenced by both environmental and genetic factors. The team finds tantalizing clues about EDS, laying a foundation for larger scale studies of diverse populations. Results of the study are published in the journal Sleep.

“Looking in diverse populations benefits all populations,” said corresponding author Tamar Sofer, PhD, associate biostatistician and director of the Biostatistics core of the program in sleep medicine epidemiology in the Division of Sleep and Circadian Disorders at the Brigham. “We need more studies in ethnically diverse populations, especially for sleep disorders like EDS where there are differences across populations. When we focus narrowly, we have less opportunity to make discoveries.”

For the current study, investigators used data from 619 participants in the Multi-Ethnic Study of Atherosclerosis (MESA) and 483 participants in the Cardiovascular Health Study (CHS). Participants completed a sleep exam, which included questions to assess the likelihood of dozing off during a variety of daily activities. Using this questionnaire, the team could assign a score to each participant on the Epworth Sleepiness Scale, a screening tool for EDS. The team also collected data on DNA methylation — the most commonly studied epigenetic marker. DNA methylation occurs when a methyl group is added at a specific DNA site, influencing the activity of a particular gene.

Among the MESA participants, the team found four sites of DNA methylation that were associated with sleepiness: one across all race/ethnic groups and three among African Americans only. Two of these associations were nominally replicated in the CHS population. When the team looked at only African American participants from both studies, they found 14 DNA methylation sites associated with sleepiness. Some of these sites were found in genes that have been previously reported as associated with sleep traits. The team found additional overlap in a follow-up study of genes associated with sleepiness in data from the UK Biobank.

DNA methylation is thought to be influenced by a variety of environmental factors, such as exposure to air pollution, stress and diet, as well as a person’s genetics.

“We’ve uncovered multiple sites, but our search is continuing,” said Sofer. “What’s interesting about epigenetics is that it’s modifiable — lifestyle exposures can change these markers. If we can eventually use epigenetics as a readout or marker for excessive sleepiness and understand what causes these changes, we may be able to find ways to intervene to alleviate the burden of EDS.”

###

Funding for this work was provided by the National Cancer Institute (grant T32CA094880), the National Heart, Lung, and Blood Institute (R01HL113338, R35 HL135818, R01HL113338), the National Institutes of Health (NIH R01DK107859, R01DK102696 and R01DK105072) and Sleep Research Society Foundation Career Development Award 018-JP-18.

Media Contact
Mark Murphy
[email protected]

Tags: EpidemiologyMedicine/HealthSleep/Sleep Disorders
Share12Tweet8Share2ShareShareShare2

Related Posts

S100B Activates Macrophages to Regenerate Mouse Airways

December 17, 2025

Self-Control Influences Critical Thinking in Nursing Students

December 17, 2025

GSDME Triggers Aneurysm by Accelerating Vascular Aging

December 17, 2025

Neonatal Surgery Outcomes for Critical Congenital Heart Disease

December 17, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

S100B Activates Macrophages to Regenerate Mouse Airways

Pilot Extraction of Propolis Bioactives via Subcritical Solvent

Multi-Omics Identifies CYP2B6 as Key in Lung Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.