• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers double sorghum grain yield to improve food supply

Bioengineer by Bioengineer
October 30, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Ware lab/CSHL, 2019


Plant scientists at Cold Spring Harbor Laboratory (CSHL) and USDA’s Agricultural Research Service (ARS), in their search for solutions to global food production challenges, have doubled the amount of grains that a sorghum plant can yield.

Sorghum, one of the world’s most important sources of food, animal feed, and biofuel, is considered a model crop for research because it has a high tolerance to drought, heat, and high-salt conditions. Increasing the grain yield has become even more important to plant breeders, farmers, and researchers as they try to address and overcome food security issues related to climate change, growing populations, and land and water shortages.

Led by Doreen Ware, CSHL Adjunct Professor and research scientist at the U.S. Department of Agriculture, and USDA colleague Zhanguo Xin, Ph.D, the research team identified novel genetic variations that occurred in sorghum’s MSD2 gene, increasing the grain yield 200 percent. MSD2 is part of a gene line that boosts flower fertility by lowering the amount of jasmonic acid, a hormone that controls the development of seeds and flowers.

“When this hormone is decreased, you have a release of development that does not normally occur,” said Nicholas Gladman, a postdoctoral fellow in Ware’s lab and first author on the study, recently published in The International Journal of Molecular Sciences. “That allows for the full formation of the female sex organs in these flowers, which then allows for increased fertility”

MSD2 is regulated by MSD1, a gene discovered by Ware’s team last year. Manipulating either gene increases seed and flower production.

“Major cereal crops are very close to each other evolutionarily. A lot of the genes that they share have similar functions,” said Yinping Jiao, a postdoctoral associate in the Ware Lab and an author on the study. “This gene that plays an important role controlling the sorghum yield may also help us improve the yield of other crops like maize or rice.”

Ware’s lab uses this type of genetic research to understand how plants have changed over time.

“These genetic analyses actually give us the molecular mechanisms that provide more opportunities to engineer crops in the future,” she said.

###

The team is now looking to work with collaborators, such as the United States Department of Agriculture, to see if one of the genes–MSD2 or MSD1–can be used to improve sorghum yield in large field trials.

Media Contact
Sara Roncero-Menendez
[email protected]
516-367-6866

Original Source

https://www.cshl.edu/researchers-double-sorghum-grain-yield-to-improve-food-supply/

Tags: Agricultural Production/EconomicsAgricultureBiologyFood/Food ScienceGeneticsPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

Rapid, Non-Invasive Method to Detect Timber Adulteration

Rapid, Non-Invasive Method to Detect Timber Adulteration

August 24, 2025
Trait Diversity of Malvastrum in Pakistan’s Tree Plantations

Trait Diversity of Malvastrum in Pakistan’s Tree Plantations

August 24, 2025

Cicada Exuviae: Unique Soil Adhesion and Water Resistance

August 24, 2025

Neural Stem Cell Exosomes Alleviate MPTP-Induced Parkinson’s

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rapid, Non-Invasive Method to Detect Timber Adulteration

New AMH Cutoffs for Chinese Women with PCOS

Trait Diversity of Malvastrum in Pakistan’s Tree Plantations

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.