• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers discover unique material design for brain-like computations

Bioengineer by Bioengineer
June 18, 2020
in Science News
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr. Sina Najmaei and Prof Chinedu Ekuma of Lehigh University

Over the past few decades, computers have seen dramatic progress in processing power; however, even the most advanced computers are relatively rudimentary in comparison with the complexities and capabilities of the human brain.

Researchers at the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory say this may be changing as they endeavor to design computers inspired by the human brain’s neural structure.

As part of a collaboration with Lehigh University, Army researchers have identified a design strategy for the development of neuromorphic materials.

“Neuromorphic materials is a name given to the material categories or combination of materials that provide both computing and memory capabilities in devices,” said Dr. Sina Najmaei, a research scientist and electrical engineer with the laboratory.

Najmaei and his colleagues published a paper, Dynamically reconfigurable electronic and phononic properties in intercalated Hafnium Disulfide (HfS2), in the May 2020 issue of Materials Today.

The neuromorphic computing concept is an in-memory solution that promises orders of magnitude reductions in power consumption over conventional transistors, and is suitable for complex data classification and processing. The limited power efficiency in conventional transistors is a fundamental technology shortcoming impeding future progress in computing.

Neuromorphic materials research conducted over the past 10 years has focused on understanding the unique properties of 2-D materials and their van der Waals multilayered structures.

“The findings show great promise for these materials in electronic applications, but also show the unique interfaces in these materials provide an unprecedented opportunity for design of material properties,” Najmaei said.

Over the past four years, the team conducted an effort focused on the design of material properties for high-performance electronic applications.

“Our research led to our Materials Today paper, which expands this effort to design of reconfigurable properties in these materials based on van der Waal/organometallic hybrid systems and neuromorphic material design,” Najmaei said.

Neuromorphic computing processes information using new models of computing similar to the brain’s cognitive processes.

“In order to process and make rational inferences from the input, information and a new paradigm of computing is needed,” Najmaei said. “Neuromorphic hardware with in-memory computer capabilities promises to bridge this ever-growing technology gap.”

This research is an important stepping stone towards development of in-memory computing in hybrid devices with unique functional properties for integration in cognitive sensory devices and overcomes significant technical challenges that impede a bottom up approach for streamlining of brain-inspired computing hardware, he said.

If the researchers can ultimately develop a computer that can behave like the brain, it would be extremely useful to the warfighter, Najmaei said.

Neuromorphic computing, like a neural system, would offer computing capability complete with perks, such as robustness to damage, ability to learn, adaptability to change and others. It would have the potential to reduce operational power by a magnitude of 1,000 to 1 million times in comparison to today’s computing paradigms.

This level of processing would be highly desirable for image recognition in autonomous systems, and for artificial intelligence in general. Given the significance of AI and autonomous systems in modern day warfare, neuromorphic computing may very well be a cornerstone for a wide range of future leap-ahead warfighting capabilities, Najmaei said.

###

Media Contact
Tracie Dean
[email protected]

Original Source

http://www.army.mil/article/236340/researchers_discover_unique_material_design_for_brain_like_computations

Related Journal Article

http://dx.doi.org/10.1016/j.mattod.2020.04.030

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyComputer ScienceResearch/DevelopmentRobotry/Artificial IntelligenceSoftware EngineeringTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

July 29, 2025
Cracking the Code of Cancer Drug Resistance

Cracking the Code of Cancer Drug Resistance

July 29, 2025

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

July 29, 2025

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

July 29, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.