• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers discover quantum switch for regulating photosynthesis

Bioengineer by Bioengineer
September 1, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Photosynthesis is a crucial process that allows plants to convert carbon dioxide into organic compounds using solar energy. Light-harvesting complex II (LHCII) is a complex of pigment molecules bound to proteins. It switches between two main functions—dissipating harmful excess light energy as heat under high light intensity through nonphotochemical quenching, and transferring absorbed light to the reaction center with almost a unit efficiency under low light.

Cryo-EM structures for LHCII in nanodisc and in detergent solution at pH 7.8 and 5.4.

Credit: Institute of Physics

Photosynthesis is a crucial process that allows plants to convert carbon dioxide into organic compounds using solar energy. Light-harvesting complex II (LHCII) is a complex of pigment molecules bound to proteins. It switches between two main functions—dissipating harmful excess light energy as heat under high light intensity through nonphotochemical quenching, and transferring absorbed light to the reaction center with almost a unit efficiency under low light.

Bioengineering studies have shown that accelerating the transition between these two functions can increase photosynthetic efficiency, e.g., soybean yields have been reported to increase by up to 33%. However, the atomic-level dynamic structural changes in LHCII that activate such allosteric regulation had not been previously elucidated.

ln this study, researchers led by Prof. WENG Yuxiang from the Institute of Physics of the Chinese Academy of Sciences, together with Prof. GAO Jiali’s group from Shenzhen Bay Laboratory, combined single-particle cryo-electron microscopy (cryo-EM) studies of dynamic structures of LHCII at atomic resolution with multistate density functional theory (MSDFT) calculations of energy transfer between photosynthetic pigment molecules to identify the photosynthetic pigment quantum switch for intermolecular energy transfer.

As part of their work, they reported a series of six cryo-EM structures, including the energy transfer state with LHCII in solution and the energy quenching state with laterally confined LHCII in membrane nanodiscs under both neutral and acidic conditions.

Comparison of these different structures shows that LHCII undergoes a conformational change upon acidification. This change allosterically alters the inter-pigment distance of the fluorescence quenching locus Lutein1 (Lut1)–Chlorophyll612 (Chl612) only when LHCII is confined in membrane nanodiscs, leading to the quenching of excited Chl612 by Lut1. Thus, LHCII confined with lateral pressure (e.g., aggregated LHCII) is a prerequisite for non-photochemical quenching (NPQ), whereas acid-induced conformational change enhances fluorescence quenching. Through MSDFT calculations of cryo-EM structures and the known crystal structure in quenched states, together with transient fluorescence experiments, a significant quantum switching mechanism of LHCII has been revealed with Lut1–Chl612 distance as the key factor.

This distance regulates the energy transfer quantum channel in response to the lateral pressure on LHCII and the conformational change, that is, a slight change at its critical distance of 5.6 Å would allow reversible switching between light harvesting and excess energy dissipation. This mechanism enables a rapid response to changes in light intensity, ensuring both high efficiency in photosynthesis and balanced photoprotection with LHCII as a quantum switch.

Previously, these two research groups had collaborated on molecular dynamics simulations and ultrafast infrared spectroscopy experiments and had proposed that LHCII is an allosterically regulated molecular machine. Their current experimental cryo-EM structures confirm the previously theoretically predicted structural changes in LHCII.

This study entitled “Cryo-EM Structures of LHCII in Photo-active and Photo-protecting States Reveal Allosteric Regulation of Light-Harvesting and Excess Energy-Dissipation” was published on Nature Plants.

This research was supported by projects from the Chinese Academy of Sciences, the National Natural Science Foundation of China, and the Shenzhen Municipal Science and Technology Innovation Commission.



Journal

Nature Plants

DOI

10.1038/s41477-023-01500-2

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Cryo-EM structures of LHCII in photo-active and photo-protecting states reveal allosteric regulation of light harvesting and excess energy dissipation

Article Publication Date

31-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Pimple Patches Offer Effective Solution for Stubborn Acne

August 29, 2025

Revealing the Unseen: A Breakthrough Method to Enhance Nanoscale Light Emission

August 29, 2025

Fluorescent Smart Eye Patch Revolutionizes Monitoring of Eye Health

August 29, 2025

Protective Dual Shell Extends Lifespan of Lithium-Rich Batteries

August 29, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diabetes Screening Insights for Women in Lesotho

Insights on Insulin Dosing from Germans with Diabetes

Ensemble Algorithms Predict Neonatal Mortality in Ethiopia

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.