• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, August 11, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers discover new mechanism for Type IV pili retraction in Vibrio cholerae

Bioengineer by Bioengineer
January 4, 2017
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Type IV pili, essential for many pathogens to cause disease, are hair-like appendages that grow out of and are retracted back into bacteria cells, enabling them to move and adhere to surfaces. Although pathogenic bacteria often rely on a specialized molecular motor to retract their pili, a new study in PLOS Pathogens reveals that a minor pilin protein elicits pilus retraction in the cholera bacterium, Vibrio cholerae.

Bacteria utilize a number of highly sophisticated molecular tools to colonize their hosts. One of the most ubiquitous is a complex nanomachine called the Type IV pilus. This nanomachine has as few as 10 to as many as 30 molecular components, producing exquisitely thin filaments that extend from the bacterial surface and that can be several times the length of the bacteria itself. These pilus filaments have a remarkable array of functions that rely on their ability to (i) adhere to many substrates, including host cell surfaces, pili from nearby bacteria, DNA and bacterial viruses (bacteriophage), and (ii) to depolymerize or retract, which pulls the bacteria along mucosal surfaces, pulls them close together in protective aggregates, and can even draw in substrates like DNA and bacteriophage for nutrition and genetic variation.

In collaboration with researchers from Dartmouth College and Simon Fraser University, Dr. Nicolas Biais, Assistant Professor of Biology at Brooklyn College, City University of New York (CUNY), developed an assay in his laboratory that revealed for the first time the V. cholerae Type IV pilus can retract without this molecular motor, and that retraction is necessary for these pili to function. Instead of a molecular motor, a small minor pilin protein triggers pilus retraction. "The magnitude of the forces though is much smaller," said Dr. Biais. "If Neisseria gonorrhoeae can pull roughly 100,000 times its bodyweight, Vibrio cholerae barely makes it to 1,000 times of its bodyweight. This is a new mechanism for retraction that will help understand how other pili and closely related secretion systems can work and potentially help with the design of novel antibiotics."

"This report […] demonstrates that the bacterium that causes cholera powers a nanomachine required for infection differently than other disease causing bacteria," said Dr. Hank Seifert, Professor of Biomedical Sciences at Feinberg School of Medicine, Northwestern University, who was not involved with the study. "These findings drastically alter our understanding of how these nanomachines function to provide insights into the mechanisms allowing cholera and the development of synthetic nanomachines."

Research on how Type IV pili function not only advances our understanding of V. cholerae pathogenesis, but will also aid in developing future prevention and treatment strategies for cholera.

###

Read the full article at: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006109

The City University of New York is the nation's leading urban public university. Founded in New York City in 1847, the University comprises 24 institutions: 11 senior colleges, seven community colleges, and additional professional schools. The University serves nearly 275,000 degree-credit students and 218,083 adult, continuing and professional education students.

For more information, please contact Shante Booker ([email protected]) or visit http://www.cuny.edu/research

Media Contact

Shante Booker
[email protected]
@cunyresearch

http://www.cuny.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Figure 1

Metaholographic platform that detects light exposure

August 11, 2022
Image 1

Interactive map of metabolical synthesis of chemicals​

August 11, 2022

NASA’s Fermi confirms star wreck as source of extreme cosmic particles

August 11, 2022

CityU material scientists discover a new mechanism to increase the strength and ductility of high-entropy alloys

August 11, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    66 shares
    Share 26 Tweet 17
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonUrogenital SystemVaccinesVirusVirologyZoology/Veterinary ScienceWeather/StormsUrbanizationVehiclesViolence/CriminalsWeaponryVaccine

Recent Posts

  • Metaholographic platform that detects light exposure
  • Interactive map of metabolical synthesis of chemicals​
  • NASA’s Fermi confirms star wreck as source of extreme cosmic particles
  • CityU material scientists discover a new mechanism to increase the strength and ductility of high-entropy alloys
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In