• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers discover key protein in the production of insulin

Bioengineer by Bioengineer
January 25, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The crucial hormone insulin needs help acquiring the right structure. A protein that assists in the process of insulin folding has just been discovered in a new study conducted by researchers at the Department of Biomedical Sciences, University of Copenhagen. They hope the new research results can be used to develop treatments for conditions such as increased level of insulin in the blood known as hyperinsulinemia.

Even though researchers have been familiar with and studied the hormone insulin for more than a hundred years, especially in connection with diabetes, they still make new discoveries concerning the hormone. Now researchers from the Faculty of Health and Medical Sciences at the University of Copenhagen have uncovered a hitherto unknown process in the production of insulin. The new research results have just been published in the scientific journal Diabetes.

Insulin is produced in the beta cells of the pancreas. The hormone is produced as a precursor called proinsulin. For proinsulin to mature into functional insulin, it needs to be folded and processed correctly to acquire the right structure with assistance from proteins that are termed chaperones. The researchers have now discovered and identified such a chaperone. A proinsulin chaperone termed glucose-regulated protein GRP94.

‘Even though proinsulin has a relatively short sequence, it still needs help acquiring the right structure to become mature, functional insulin. However, several other studies have shown that proinsulin can be folded without help from proteins in artificial cell-free conditions. Yet, our study conducted in live cells shows that proinsulin is not folded correctly and does not acquire the right structure without help from GRP94,’ says last author of the study, Associate Professor Michal Tomasz Marzec from the Department of Biomedical Sciences at the University of Copenhagen.

Impaired Insulin Production and Secretion

In the study the researchers removed or inhibited the protein GRP94 in to see what happened with the proinsulin and the cells. They observed that the proinsulin was not folded correctly and the beta cells did not secrete sufficient amounts of insulin. The researchers were surprised though to learn that removal of GRP94 did not affect cell viability. Nothing happened to the cells after they had removed the protein.

‘This is surprising, because one would anticipate that the beta cells would die from stress when huge amounts of misfolded proinsulin accumulate inside the cells. It is like removing the bearing beam without weakening the construction. This indicates that the GRP94 protein plays a very specialized function and that beta cells are well-prepared to mount effective responses to deal with consequences of misfolding of proinsulin. We are currently working to understand these responses and their biological and pathological consequences,’ says Associate Professor Michal Tomasz Marzec.

According to the researchers, the research results may make it possible in the future to manipulate the process from proinsulin to insulin in the body’s beta cells. If you can use medicine to inhibit the assistant protein, the result would be reduced insulin secretion. This would be useful in connection with conditions like hyperinsulinemia, where the body produces too much insulin. In the long term, they also hope the new knowledge will be useful in connection with types 1 and 2 diabetes.

‘We hope this new discovery will guide the development of novel drugs. Understanding the biological processes behind the production of insulin in the cells will enable us to modify the processes. We thus hope we will be able to inhibit overproduction of insulin as it occurs in children and adults with hyperinsulinemia. In the long term we also hope we will be able to increase the production of insulin, ease the large production burden of beta cells in connection with type 2 diabetes and to maintain their secretion function for longer without the need for insulin injections,’ says Associate Professor Michal Tomasz Marzec.

###

Contact:

Associate Professor Michal Tomasz Marzec

Phone: +45 35331284/+45 25520256

Email: [email protected]

Media Contact
Cecilie Krabbe
[email protected]
45-93-56-59-11

Related Journal Article

https://healthsciences.ku.dk/newsfaculty-news/2019/01/researchers-discover-key-protein-in-the-production-of-insulin/
http://dx.doi.org/10.2337/db18-0671

Tags: Cell BiologyDiabetesMedicine/HealthMetabolism/Metabolic Diseases
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NIH Grant Supports Innovative Research Targeting the Root Causes of HIV Persistence

Low-Dose Dexamethasone Prevents Paclitaxel Reactions

Unraveling Ion Transport in LISICON Structures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.