• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers discover gene linked to bone cancer in children, ID potential novel therapy

Bioengineer by Bioengineer
September 6, 2025
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CHAPEL HILL, North Carolina–Researchers have discovered a gene, OTUD7A, that impacts the development of Ewing sarcoma, a bone cancer that occurs mainly in children. They have also identified a compound that shows potential to block OTUD7A protein activity. The finding, by scientists at the University of North Carolina and the Lineberger Comprehensive Cancer Center, appeared online June 1, 2021, in Advanced Science.

About 250 children and young adults are diagnosed with Ewing sarcoma each year in the U.S. About half of those diagnosed will ultimately succumb to the disease, pointing to the need for better therapies.

“Our primary research focus targeted the EWS-FLI1 fusion protein found in about 85 percent of Ewing sarcoma patients,” said UNC Lineberger’s Pengda Liu, PhD, assistant professor of Biochemistry and Biophysics in the UNC School of Medicine and co-lead author. “This protein, made up of pieces of two other proteins, is unique to Ewing sarcoma and only produced in cancer cells, making it an excellent target for treatment.”

Critical relationships between proteins contribute to the development of cancers such as Ewing sarcoma. So, it was a seminal discovery when the UNC researchers found that OTUD7A controls the cancer-causing fusion protein.

Armed with this knowledge, the scientists went on the hunt for small molecule compounds that could block OTUD7A’s activity. Their collaborator, Atomwise Inc., used an artificial intelligence program known as AtomNet to screen four million small molecules to find ones that could fit into a pocket in OTUD7A. One compound they identified, 7Ai, showed a good ability to reduce tumor formation in mice that were grafted with human Ewing sarcoma cells. The compound did not appear to be toxic and was well-tolerated. Also, 7Ai did not kill normal cells that were tested in lab culture experiments.

“Treatment with 7Ai could provide a new targeted therapeutic option for patients who become resistant to chemotherapy. Developing an effective drug will require more lab work and then clinical studies, however,” said Liu.

“By deeply exploring the key cellular processes that lead to cancer, unexpected potential therapeutic avenues can result,” said co-author Ian Davis, MD, PhD, G. Denman Hammond Professor of Childhood Cancer and co-leader of the Cancer Genetics Program at UNC Lineberger. “Once the basic science validated our biological approaches, the application of computational virtual screening enabled us to quickly identify a lead molecule for further testing and validation.”

The researchers are currently working with the UNC Eshelman School of Pharmacy to improve 7Ai’s potency and specificity.

“I am particularly indebted to a UNC student with metastatic Ewing sarcoma who made it a priority to donate tissue that could be used for research,” said Davis, who is also the associate division chief of pediatric hematology-oncology. “We’re also appreciative of funding for our research through an NIH Beau Biden Pediatric Cancer Moonshot grant, which came about after the cancer-related death of President Biden’s son.”

###

Authors

In addition to Liu and Davis, the paper’s other authors at UNC include Siyuan Su, PhD, Jianfeng Chen, PhD, Yao Jiang, Ying Wang, PhD, Tamara Vital, Jiaming Zhang, MD, Zhichuan Zhu, PhD, Alex W. Prevatte, Natalie K. Barker, and Laura E. Herring, PhD. Christian Laggner and Kong T. Nguyen are at Atomwise Inc., San Francisco.

Media Contact
Bill Schaller
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/advs.202004846

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Reveals Innovative System That Significantly Reduces Patient Discharge Waiting Times

October 28, 2025
blank

Exploring Emotional Intelligence’s Impact on Nursing Students’ Internet Addiction

October 28, 2025

Ambivalent Sexism’s Impact on Chinese Women’s Eating Disorders

October 28, 2025

Streamlining Abortion Policy: A Systems Thinking Approach

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1288 shares
    Share 514 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Allison Institute’s Third Annual Scientific Symposium Features Panel Discussion with Five Nobel Laureates

New Study Reveals Innovative System That Significantly Reduces Patient Discharge Waiting Times

Contaminated Water Enhances Opportunities for Clean Hydrogen Production

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.