• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers discover a hidden culprit in heart failure

Bioengineer by Bioengineer
January 10, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Discovery unlocks potential new target for personalized treatment

IMAGE

Credit: University of Alberta


An international research team led by scientists at the University of Alberta have pinpointed a hidden culprit that leads to dilated cardiomyopathy–a dangerous condition that accounts for 20 per cent of all cases of heart failure–which opens the door to potential new treatments that could help counter the threat.

The team identified a key molecule named PI3K alpha that binds to gelsolin–an enzyme that can destroy filaments that help make up the structure of the heart’s cells–and suppresses it.

The researchers, led by Gavin Oudit, a professor of cardiology at the U of A and director of the Heart Function Clinic at the Mazankowski Alberta Heart Institute, believe the molecule holds great promise as a possible therapeutic target, offering a possible path forward to personalized and precision medicine for patients with dilated cardiomyopathy.

The condition decreases the heart’s ability to pump blood because its main pumping chamber, the left ventricle, is enlarged and weakened. Researchers studied the condition at the molecular level in animal models and in explanted human hearts, and found that the pathway leading to dilated cardiomyopathy is common in all species.

According to Oudit, who holds the Canada Research Chair in Heart Failure, the condition is caused by biomechanical stress, which activates the gelsolin enzyme.

“You need some gelsolin, but when it gets out of control, it destroys things. The molecule chews up the filaments and you get really bad heart failure,” said Oudit. “But we have also shown that when you suppress this molecule, you preserve your heart function. It’s intact.”

Oudit said the potential impact on patient care is huge.

“By understanding these patients better, we’ll hopefully be able to develop specific therapies for them,” he said.

According to Oudit, there are currently no specific treatments for patients with heart failure. The same medications are used for all patients.

“But if we can now identify patients that have problems with this type of remodelling (dilated cardiomyopathy), we can target them specifically,” he explained. “That’s where we’re heading down the road. And to take this research right from the molecule to our patients, it’s very rewarding.”

###

The research, which was published in Nature Communications, was supported by funding from the Canadian Institutes of Health Research, the Heart and Stroke Foundation, Alberta Innovates, and the Canada Research Chair in Heart Failure.

Media Contact
Ross Neitz
[email protected]
780-492-5986

Original Source

https://www.folio.ca/researchers-discover-a-hidden-culprit-in-heart-failure/

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-07812-8

Tags: CardiologyMedicine/Health
Share12Tweet7Share2ShareShareShare1

Related Posts

Impact of RISE Program on Contraceptive Equity in Uganda

November 5, 2025

Projectile Impact on Human Bone and Polyurethane Simulant

November 5, 2025

Sex Differences in Heart Septum Mechanics Explored

November 5, 2025

Study Reveals Elevated Risk of Rare Heart Complications in Children Following COVID-19 Infection Compared to Vaccination

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of RISE Program on Contraceptive Equity in Uganda

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

Novel Asymmetric Stress Techniques Enhance Dislocation Density in Brittle Superconductors for Improved Vortex Pinning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.