• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 17, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers develop the world’s first power-free frequency tuner using nanomaterials

Bioengineer by Bioengineer
March 18, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a paper published today in Nature Communications, researchers at the University of Oxford and the University of Pennsylvania have found a power-free and ultra-fast way of frequency tuning using functional nanowires.

Researchers develop the world's first power-free frequency tuner using nanomaterials

Credit: Editor: Utku Emre Ali
Narrator: Jack Davies

In a paper published today in Nature Communications, researchers at the University of Oxford and the University of Pennsylvania have found a power-free and ultra-fast way of frequency tuning using functional nanowires.

Think of an orchestra warming up before the performance. The oboe starts to play a perfect A note at a frequency of 440 Hz while all the other instruments adjust themselves to that frequency. Telecommunications technology relies on this very concept of matching the frequencies of transmitters and receivers. In practice, this is achieved when both ends of the communication link tune into the same frequency channel.

In today’s colossal communications networks, the ability to reliably synthesise as many frequencies as possible and to rapidly switch from one to another is paramount for seamless connectivity.

Researchers at the University of Oxford and the University of Pennsylvania have fabricated vibrating nanostrings of a chalcogenide glass (germanium telluride) that resonate at predetermined frequencies, just like guitar strings. To tune the frequency of these resonators, the researchers switch the atomic structure of the material, which in turn changes the mechanical stiffness of the material itself.

This differs from existing approaches that apply mechanical stress on the nanostrings similar to tuning a guitar using the tuning pegs. This directly translates into higher power consumption because the pegs are not permanent and require a voltage to hold the tension.

Utku Emre Ali, at the University of Oxford who completed the research as part of his doctoral work said:

‘By changing how atoms bond with each other in these glasses, we are able to change the Young’s modulus within a few nanoseconds. Young’s modulus is a measure of stiffness, and it directly affects the frequency at which the nanostrings vibrate.’

Professor Ritesh Agarwal, School of Engineering and Applied Science, University of Pennsylvania who collaborated on the study first discovered a unique mechanism that changed the atomic structure of novel nanomaterials back in 2012.

‘The idea that our fundamental work could have consequences in such an interesting demonstration more than 10 years down the line is humbling. It’s fascinating to see how this concept extends to mechanical properties and how well it works,’ said Professor Agarwal.

Professor Harish Bhaskaran, Department of Materials, University of Oxford who led the work said:

‘This study creates a new framework that uses functional materials whose fundamental mechanical property can be changed using an electrical pulse. This is exciting and our hope is that it inspires further development of new materials that are optimized for such applications.’

The engineers further estimate that their approach could operate a million times more efficiently than commercial frequency synthesisers while offering 10-100 times faster tuning. Although improving the cyclability rates and the readout techniques is a necessity for commercialisation, these initial results might mean higher data rates with longer-lasting batteries in the future.

The full paper, Real-time nanomechanical property modulation as a framework for tunable NEMS, is published in Nature Communications.



Journal

Nature Communications

DOI

10.1038/s41467-022-29117-7

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Real-time nanomechanical property modulation as a framework for tunable NEMS

Article Publication Date

18-Mar-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Lung cancer screening

Nearly half of patients at high risk for lung cancer delayed screening follow-up

May 17, 2022
The subtropical North Atlantic

Deep ocean warming as climate changes

May 17, 2022

For large bone injuries, it’s Sonic hedgehog to the rescue

May 17, 2022

New light on organic solar cells

May 17, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsVehiclesVaccineUrbanizationUniversity of WashingtonViolence/CriminalsVirologyVaccinesZoology/Veterinary ScienceUrogenital SystemVirusWeaponry

Recent Posts

  • Nearly half of patients at high risk for lung cancer delayed screening follow-up
  • Deep ocean warming as climate changes
  • For large bone injuries, it’s Sonic hedgehog to the rescue
  • New light on organic solar cells
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....