• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers develop intelligent, shape-morphing, self-healing material for soft robotics

Bioengineer by Bioengineer
October 10, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Soft Machines Lab, Carnegie Mellon University


PITTSBURGH– Advances in the fields of soft robotics, wearable technologies, and human/machine interfaces require a new class of stretchable materials that can change shape adaptively while relying only on portable electronics for power. Researchers at Carnegie Mellon University have developed such a material that exhibits a unique combination of high electrical and thermal conductivity with actuation capabilities that are unlike any other soft composite.

In findings published in Proceedings of the National Academy of Sciences this week, the researchers report on this intelligent new material that can adapt its shape in response to its environment. The paper is titled “A multifunctional shape-morphing elastomer with liquid metal inclusions.”

It is not only thermally and electrically conductive, it is also intelligent,” said Carmel Majidi, an associate professor of mechanical engineering who directs the Soft Machines Lab at Carnegie Mellon. “Just like a human recoils when touching something hot or sharp, the material senses, processes, and responds to its environment without any external hardware. Because it has neural-like electrical pathways, it is one step closer to artificial nervous tissue.”

Majidi is a pioneer in developing new classes of materials for use in soft matter engineering and soft robotics. His research team has previously created advanced material architectures using deformable liquid metal micro- and nano-droplets of gallium indium. This is the first time that his lab has combined this technique with liquid crystal elastomers (LCEs), a type of shape-morphing rubber. Majidi and his research team collaborated with LCE expert Taylor Ware, a professor of bioengineering at the University of Texas, Dallas, and his graduate student, Cedric Ambulo.

LCEs are like liquid crystals used in flat-panel displays but linked together like rubber. Because they move when they are exposed to heat, they hold promising functionality as a shape-morphing material; unfortunately, they lack the electrical and thermal conductivity needed for shape memory activation. Although rigid fillers can be incorporated to enhance conductivity, these cause the mechanical properties and the shape-morphing capabilities of LCEs to degrade. The researchers overcame these challenges by combining the liquid metal gallium indium with the LCEs to create a soft, stretchable composite with unprecedented multifunctionality.

Another key feature of the material is its resilience and response to significant damage.

“We observed both electrical self-healing and damage detection capabilities for this composite, but the damage detection went one step further than previous liquid metal composites,” explained Michael Ford, a postdoctoral research associate in the Soft Machines Lab and the lead author of the study. “Since the damage creates new conductive traces that can activate shape-morphing, the composite uniquely responds to damage.”

The material’s high electrical conductivity allows the composite to interface with traditional electronics, respond dynamically to touch, and change shape reversibly. It could be used in any application that requires stretchable electronics: healthcare, clothing, wearable computing, assistance devices and robots, and space travel.

###

Majidi also holds a courtesy appointment in the Department of Materials Science and Engineering and the Robotics Institute at Carnegie Mellon University. Other Carnegie Mellon authors include Jonathan Malen, a professor of mechanical engineering, graduate students Teresa Kent and Chengfeng Pan, and alumnus Eric Markvicka, now an assistant professor at the University of Nebraska-Lincoln.

The work was funded by a grant by the Army Research Office.

About the College of Engineering: The College of Engineering at Carnegie Mellon University is a top-ranked engineering college that is known for our intentional focus on cross-disciplinary collaboration in research. The College is well-known for working on problems of both scientific and practical importance. Our “maker” culture is ingrained in all that we do, leading to novel approaches and transformative results. Our acclaimed faculty have a focus on innovation management and engineering to yield transformative results that will drive the intellectual and economic vitality of our community, nation and world.

About Carnegie Mellon University: Carnegie Mellon is a private, internationally ranked university with programs in areas ranging from science, technology and business to public policy, the humanities and the arts. More than 13,000 students in the university’s seven schools and colleges benefit from a small faculty-to-student ratio and an education characterized by its focus on creating and implementing solutions for real world problems, interdisciplinary collaboration and innovation.

Media Contact
Lisa Kulick
[email protected]
412-268-5444

Tags: Electrical Engineering/ElectronicsMaterialsMechanical EngineeringRobotry/Artificial IntelligenceSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Transforming Art: Fusion GANs for Style Conversion

Navigating Dementia Care: Transitions in Home Management

ERO1A Enhances Bladder Cancer Growth via JAK-STAT

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.